2,927 research outputs found

    Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles

    Get PDF
    Electric vehicles could be a significant aid in lowering greenhouse gas emissions. Even though extensive study has been done on the features and traits of electric vehicles and the nature of their charging infrastructure, network modeling for electric vehicle manufacturing has been limited and unchanging. The necessity of wireless electric vehicle charging, based on magnetic resonance coupling, drove the primary aims for this review work. Herein, we examined the basic theoretical framework for wireless power transmission systems for EV charging and performed a software-in-the-loop analysis, in addition to carrying out a performance analysis of an EV charging system based on magnetic resonance. This study also covered power pad designs and created workable remedies for the following issues: (i) how power pad positioning affected the function of wireless charging systems and (ii) how to develop strategies to keep power efficiency at its highest level. Moreover, safety features of wireless charging systems, owing to interruption from foreign objects and/or living objects, were analyzed, and solutions were proposed to ensure such systems would operate as safely and optimally as possible

    Vehicle-to-vehicle charging system fundamental and design comparison

    Get PDF
    The popularisation of the Electric Vehicle (EV) is restrained by the stagnation of energy storage technology and inadequate plug-in charging stations. This paper proposes a new vehicle-to-vehicle (V2V) charging technology platform, that can achieve wireless charging working in harmony with plug-in charging technology, or operate independently. V2V charging technology can effectively solve the problem of the limited number of plug-in stations. Moreover, it can charge the car any-time, anywhere, like a power bank. V2V charging system design requires a number of technical challenges to be overcome including the power balancing between vehicles and charging circuit design to maximizing the power transfer efficiency. In this paper, the schematic of V2V charging system is proposed, and we also propose the fundamentals of calculating the power capacity and the cost of EV energy when an EV is a power source in a V2V charging system. The hardware circuit design is presented and a detailed comparison of different coil shapes/ combinations and compensation circuit topologies is provided using the simulation tool ANSYS

    E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle

    Get PDF
    Electric vehicles (EVs) are a promising solution to reduce the transportation dependency on oil, as well as the environmental concerns. Realization of E-transportation relies on providing electrical energy to the EVs in an effective way. Energy storage system (ESS) technologies, including batteries and ultra-capacitors, have been significantly improved in terms of stored energy and power. Beside technology advancements, a battery management system is necessary to enhance safety, reliability and efficiency of the battery. Moreover, charging infrastructure is crucial to transfer electrical energy from the grid to the EV in an effective and reliable way. Every aspect of E-transportation is permeated by the presence of an intelligent hardware platform, which is embedded in the vehicle components, provided with the proper interfaces to address the communication, control and sensing needs. This embedded system controls the power electronics devices, negotiates with the partners in multi-agent scenarios, and performs fundamental tasks such as power flow control and battery management. The aim of this paper is to give an overview of the open challenges in E-transportation and to show the fundamental role played by embedded systems. The conclusion is that transportation electrification cannot fully be realized without the inclusion of the recent advancements in embedded systems

    Wireless Power Transfer Technology for Electric Vehicle Charging

    Get PDF
    In the years 1884-1889, after Nicola Tesla invented "Tesla Coil", wireless power transfer (WPT) technology is in front of the world. WPT technologies can be categorized into three groups: inductive based WPT, magnetic resonate coupling (MRC) based WPT and electromagnetic radiation based WPT. MRC-WPT is advantageous with respect to its high safety and long transmission distance. Thus it plays an important role in the design of wireless electric vehicle (EV) charging systems. The most significant drawback of all WPT systems is the low efficiency of the energy transferred. Most losses happen during the transfer from coil to coil. This thesis proposes a novel coil design and adaptive hardware to improve power transfer efficiency (PTE) in magnetic resonant coupling WPT and mitigate coil misalignment, a crucial roadblock to the acceptance of WPT for EV. In addition, I do some analysis of multiple segmented transmitters design for dynamic wireless EVs charging and propose an adaptive renewable (wind) energy-powered dynamic wireless charging system for EV

    Energy-security-based contactless battery charging system for roadway-powered electric vehicles

    Get PDF
    This paper proposes an encrypted contactless charging system for roadway-powered electric vehicles (EVs), where the energy can be specifically transferred from the electric supply to authorized EVs. The key of the proposed energy encryption scheme is to utilize the random-like Gaussian map as the security key to chaotically regulate the charging circuit of the electric supply. In such way, the energy can be wirelessly transferred to authorized EVs, while unauthorized EVs cannot illegally acquire the electric energy without knowledge of the security key. Hence, the proposed energy encryption scheme can significantly improve the secure performance of the roadway EV charging system. In this paper, the simulated and experimental results are both provided to illustrate the effectiveness of the proposed the encrypted contactless charging system for multiple roadway-powered EVs. © 2015 IEEE.published_or_final_versio

    Traffic Operations Analysis of Merging Strategies for Vehicles in an Automated Electric Transportation System

    Get PDF
    Automated Electric Transportation (AET) is a concept of an emerging cooperative transportation system that combines recent advances in vehicle automation and electric power transfer. It is a network of vehicles that control themselves as they traverse from an origin to a destination while being electrically powered in motion – all without the use of connected wires. AET\u27s realization may provide unparalleled returns in the form of dramatic reductions in traffic-related air pollution, our nation’s dependence on foreign oil, traffic congestion, and roadway inefficiency. More importantly, it may also significantly improve transportation safety by dramatically reducing the number of transportation-related deaths and injuries each year as it directly addresses major current issues such as human error and adverse environmental conditions related to vehicle emissions. In this thesis, a logical strategy in transitioning from today’s current transportation system to a future automated and electric transportation system is identified. However, the chief purpose of this research is to evaluate the operational parameters where AET will be feasible from a transportation operations perspective. This evaluation was accomplished by performing lane capacity analyses for the mainline, as well as focusing on the merging logic employed at freeway interchange locations. In the past, merging operations have been known to degrade traffic flow due to the interruptions that merging vehicles introduce to the system. However, by analyzing gaps in the mainline traffic flow and coordinating vehicle movements through the use of the logic described in this thesis, mainline traffic operations can remain uninterrupted while still allowing acceptable volumes of merging vehicles to enter the freeway. A release-to-gap merging algorithm was developed and utilized in order to maximize the automated flow of traffic at or directly downstream of a freeway merge point by maximizing ramp flows without causing delay to mainline vehicles. Through these tasks, it is the hope of this research to aid in identifying the requirements and impending impacts of the implementation of this potentially life-altering technology

    Sizing Considerations for EV Dynamic Wireless Charging Systems with Integrated Energy Storage

    Get PDF
    Roadways with dynamic wireless charging systems (DWCS) enable charge-sustaining in-motion EV charging, which can reduce charging idle time while increasing range capabilities. Spatially distributed transmitter coils are controlled in response to traffic load that varies significantly minute to minute with high power levels, very short charging time, and low system utilization like wind turbine power. Traffic load estimation and localized analysis may guide effective sizing and topology adoption for feasible and scalable DWCS deployment. DWCS traffic load approximation is reviewed with measured Automated Traffic Recorder (ATR) data and statistical distributions being used to create a synthetic load analyzed using proposed metrics quantifying system utilization over time. Lumped coil section segmentation is compared between second-based distance and spatial density analysis methods, offering 17-27% greater system utilization. A peak load shifting method is proposed for traffic redirection across two tracks with optional BESS integration increasing system utilization by 50-60% depending on time-based and power reserve-based sizing and control
    • …
    corecore