2,068 research outputs found

    Privacy-aware secured discrete framework in wireless sensor network

    Get PDF
    Rapid expansion of wireless sensor network-internet of things (WSN-IoT) in terms of application and technologies has led to wide research considering efficiency and security aspects. Considering the efficiency approach such as data aggregation along with consensus mechanism has been one of the efficient and secure approaches, however, privacy has been one of major concern and it remains an open issue due to low classification and high misclassification rate. This research work presents the privacy and reliable aware discrete (PRD-aggregation) framework to protect and secure the privacy of the node. It works by initializing the particular variable for each node and defining the threshold; further nodes update their state through the functions, and later consensus is developed among the sensor nodes, which further updates. The novelty of PRD is discretized transmission for efficiency and security. PRD-aggregation offers reliability through efficient termination criteria and avoidance of transmission failure. PRD-aggregation framework is evaluated considering the number of deceptive nodes for securing the node in the network. Furthermore, comparative analysis proves the marginal improvisation in terms of discussed parameter against the existing protocol

    Mitigating the Event and Effect of Energy Holes in Multi-hop Wireless Sensor Networks Using an Ultra-Low Power Wake-up Receiver and an Energy Scheduling Technique

    Get PDF
    This research work presents an algorithm for extending network lifetime in multi-hop wireless sensor networks (WSN). WSNs face energy gap issues around sink nodes due to the transmission of large amounts of data through nearby sensor nodes. The limited power supply to the nodes limits the lifetime of the network, which makes energy efficiency crucial. Multi-hop communication has been proposed as an efficient strategy, but its power consumption remains a research challenge. In this study, an algorithm is developed to mitigate energy holes around the sink nodes by using a modified ultra-low-power wake-up receiver and an energy scheduling technique. Efficient power scheduling reduces the power consumption of the relay node, and when the residual power of the sensor node falls below a defined threshold, the power emitters charge the nodes to eliminate energy-hole problems. The modified wake-up receiver improves sensor sensitivity while staying within the micro-power budget. This study's simulations showed that the developed RF energy harvesting algorithm outperformed previous work, achieving a 30% improvement in average charged energy (AEC), a 0.41% improvement in average energy (AEH), an 8.39% improvement in the number of energy transmitters, an 8.59% improvement in throughput, and a 0.19 decrease in outage probability compared to the existing network lifetime enhancement of multi-hop wireless sensor networks by RF Energy Harvesting algorithm. Overall, the enhanced power efficiency technique significantly improves the performance of WSNs

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Design and Real-World Evaluation of Dependable Wireless Cyber-Physical Systems

    Get PDF
    The ongoing effort for an efficient, sustainable, and automated interaction between humans, machines, and our environment will make cyber-physical systems (CPS) an integral part of the industry and our daily lives. At their core, CPS integrate computing elements, communication networks, and physical processes that are monitored and controlled through sensors and actuators. New and innovative applications become possible by extending or replacing static and expensive cable-based communication infrastructures with wireless technology. The flexibility of wireless CPS is a key enabler for many envisioned scenarios, such as intelligent factories, smart farming, personalized healthcare systems, autonomous search and rescue, and smart cities. High dependability, efficiency, and adaptivity requirements complement the demand for wireless and low-cost solutions in such applications. For instance, industrial and medical systems should work reliably and predictably with performance guarantees, even if parts of the system fail. Because emerging CPS will feature mobile and battery-driven devices that can execute various tasks, the systems must also quickly adapt to frequently changing conditions. Moreover, as applications become ever more sophisticated, featuring compact embedded devices that are deployed densely and at scale, efficient designs are indispensable to achieve desired operational lifetimes and satisfy high bandwidth demands. Meeting these partly conflicting requirements, however, is challenging due to imperfections of wireless communication and resource constraints along several dimensions, for example, computing, memory, and power constraints of the devices. More precisely, frequent and correlated message losses paired with very limited bandwidth and varying delays for the message exchange significantly complicate the control design. In addition, since communication ranges are limited, messages must be relayed over multiple hops to cover larger distances, such as an entire factory. Although the resulting mesh networks are more robust against interference, efficient communication is a major challenge as wireless imperfections get amplified, and significant coordination effort is needed, especially if the networks are dynamic. CPS combine various research disciplines, which are often investigated in isolation, ignoring their complex interaction. However, to address this interaction and build trust in the proposed solutions, evaluating CPS using real physical systems and wireless networks paired with formal guarantees of a systemā€™s end-to-end behavior is necessary. Existing works that take this step can only satisfy a few of the abovementioned requirements. Most notably, multi-hop communication has only been used to control slow physical processes while providing no guarantees. One of the reasons is that the current communication protocols are not suited for dynamic multi-hop networks. This thesis closes the gap between existing works and the diverse needs of emerging wireless CPS. The contributions address different research directions and are split into two parts. In the first part, we specifically address the shortcomings of existing communication protocols and make the following contributions to provide a solid networking foundation: ā€¢ We present Mixer, a communication primitive for the reliable many-to-all message exchange in dynamic wireless multi-hop networks. Mixer runs on resource-constrained low-power embedded devices and combines synchronous transmissions and network coding for a highly scalable and topology-agnostic message exchange. As a result, it supports mobile nodes and can serve any possible traffic patterns, for example, to efficiently realize distributed control, as required by emerging CPS applications. ā€¢ We present Butler, a lightweight and distributed synchronization mechanism with formally guaranteed correctness properties to improve the dependability of synchronous transmissions-based protocols. These protocols require precise time synchronization provided by a specific node. Upon failure of this node, the entire network cannot communicate. Butler removes this single point of failure by quickly synchronizing all nodes in the network without affecting the protocolsā€™ performance. In the second part, we focus on the challenges of integrating communication and various control concepts using classical time-triggered and modern event-based approaches. Based on the design, implementation, and evaluation of the proposed solutions using real systems and networks, we make the following contributions, which in many ways push the boundaries of previous approaches: ā€¢ We are the first to demonstrate and evaluate fast feedback control over low-power wireless multi-hop networks. Essential for this achievement is a novel co-design and integration of communication and control. Our wireless embedded platform tames the imperfections impairing control, for example, message loss and varying delays, and considers the resulting key properties in the control design. Furthermore, the careful orchestration of control and communication tasks enables real-time operation and makes our system amenable to an end-to-end analysis. Due to this, we can provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. ā€¢ We propose control-guided communication, a novel co-design for distributed self-triggered control over wireless multi-hop networks. Self-triggered control can save energy by transmitting data only when needed. However, there are no solutions that bring those savings to multi-hop networks and that can reallocate freed-up resources, for example, to other agents. Our control system informs the communication system of its transmission demands ahead of time so that communication resources can be allocated accordingly. Thus, we can transfer the energy savings from the control to the communication side and achieve an end-to-end benefit. ā€¢ We present a novel co-design of distributed control and wireless communication that resolves overload situations in which the communication demand exceeds the available bandwidth. As systems scale up, featuring more agents and higher bandwidth demands, the available bandwidth will be quickly exceeded, resulting in overload. While event-triggered control and self-triggered control approaches reduce the communication demand on average, they cannot prevent that potentially all agents want to communicate simultaneously. We address this limitation by dynamically allocating the available bandwidth to the agents with the highest need. Thus, we can formally prove that our co-design guarantees closed-loop stability for physical systems with stochastic linear time-invariant dynamics.:Abstract Acknowledgements List of Abbreviations List of Figures List of Tables 1 Introduction 1.1 Motivation 1.2 Application Requirements 1.3 Challenges 1.4 State of the Art 1.5 Contributions and Road Map 2 Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks 2.1 Introduction 2.2 Overview 2.3 Design 2.4 Implementation 2.5 Evaluation 2.6 Discussion 2.7 Related Work 3 Butler: Increasing the Availability of Low-Power Wireless Communication Protocols 3.1 Introduction 3.2 Motivation and Background 3.3 Design 3.4 Analysis 3.5 Implementation 3.6 Evaluation 3.7 Related Work 4 Feedback Control Goes Wireless: Guaranteed Stability over Low-Power Multi-Hop Networks 4.1 Introduction 4.2 Related Work 4.3 Problem Setting and Approach 4.4 Wireless Embedded System Design 4.5 Control Design and Analysis 4.6 Experimental Evaluation 4.A Control Details 5 Control-Guided Communication: Efficient Resource Arbitration and Allocation in Multi-Hop Wireless Control Systems 5.1 Introduction 5.2 Problem Setting 5.3 Co-Design Approach 5.4 Wireless Communication System Design 5.5 Self-Triggered Control Design 5.6 Experimental Evaluation 6 Scaling Beyond Bandwidth Limitations: Wireless Control With Stability Guarantees Under Overload 6.1 Introduction 6.2 Problem and Related Work 6.3 Overview of Co-Design Approach 6.4 Predictive Triggering and Control System 6.5 Adaptive Communication System 6.6 Integration and Stability Analysis 6.7 Testbed Experiments 6.A Proof of Theorem 4 6.B Usage of the Network Bandwidth for Control 7 Conclusion and Outlook 7.1 Contributions 7.2 Future Directions Bibliography List of Publication

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    20th SC@RUG 2023 proceedings 2022-2023

    Get PDF

    Spatial-temporal domain charging optimization and charging scenario iteration for EV

    Get PDF
    Environmental problems have become increasingly serious around the world. With lower carbon emissions, Electric Vehicles (EVs) have been utilized on a large scale over the past few years. However, EVs are limited by battery capacity and require frequent charging. Currently, EVs suffer from long charging time and charging congestion. Therefore, EV charging optimization is vital to ensure driversā€™ mobility. This study first presents a literature analysis of the current charging modes taxonomy to elucidate the advantages and disadvantages of different charging modes. In specific optimization, under plug-in charging mode, an Urgency First Charging (UFC) scheduling policy is proposed with collaborative optimization of the spatialtemporal domain. The UFC policy allows those EVs with charging urgency to get preempted charging services. As conventional plug-in charging mode is limited by the deployment of Charging Stations (CSs), this study further introduces and optimizes Vehicle-to-Vehicle (V2V) charging. This is aim to maximize the utilization of charging infrastructures and to balance the grid load. This proposed reservation-based V2V charging scheme optimizes pair matching of EVs based on minimized distance. Meanwhile, this V2V scheme allows more EVs get fully charged via minimized waiting time based parking lot allocation. Constrained by shortcomings (rigid location of CSs and slow charging power under V2V converters), a single charging mode can hardly meet a large number of parallel charging requests. Thus, this study further proposes a hybrid charging mode. This mode is to utilize the advantages of plug-in and V2V modes to alleviate the pressure on the grid. Finally, this study addresses the potential problems of EV charging with a view to further optimizing EV charging in subsequent studies
    • ā€¦
    corecore