1,400 research outputs found

    STAR-RIS Assisted Covert Communications in NOMA Systems

    Full text link
    Covert communications assisted by simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) in non-orthogonal multiple access (NOMA) systems have been explored in this paper. In particular, the access point (AP) transmitter adopts NOMA to serve a downlink covert user and a public user. The minimum detection error probability (DEP) at the warden is derived considering the uncertainty of its background noise, which is used as a covertness constraint. We aim at maximizing the covert rate of the system by jointly optimizing APs transmit power and passive beamforming of STAR-RIS, under the covertness and quality of service (QoS) constraints. An iterative algorithm is proposed to effectively solve the non-convex optimization problem. Simulation results show that the proposed scheme significantly outperforms the conventional RIS-based scheme in ensuring system covert performance.Comment: arXiv admin note: text overlap with arXiv:2305.04930, arXiv:2305.0399

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Trajectory and Power Design for Aerial Multi-User Covert Communications

    Full text link
    Unmanned aerial vehicles (UAVs) can provide wireless access to terrestrial users, regardless of geographical constraints, and will be an important part of future communication systems. In this paper, a multi-user downlink dual-UAVs enabled covert communication system was investigated, in which a UAV transmits secure information to ground users in the presence of multiple wardens as well as a friendly jammer UAV transmits artificial jamming signals to fight with the wardens. The scenario of wardens being outfitted with a single antenna is considered, and the detection error probability (DEP) of wardens with finite observations is researched. Then, considering the uncertainty of wardens' location, a robust optimization problem with worst-case covertness constraint is formulated to maximize the average covert rate by jointly optimizing power allocation and trajectory. To cope with the optimization problem, an algorithm based on successive convex approximation methods is proposed. Thereafter, the results are extended to the case where all the wardens are equipped with multiple antennas. After analyzing the DEP in this scenario, a tractable lower bound of the DEP is obtained by utilizing Pinsker's inequality. Subsequently, the non-convex optimization problem was established and efficiently coped by utilizing a similar algorithm as in the single-antenna scenario. Numerical results indicate the effectiveness of our proposed algorithm.Comment: 30 pages, 9 figures, submitted to the IEEE journal for revie

    Multi-User Cooperation for Covert Communication Under Quasi-Static Fading

    Full text link
    This work studies a covert communication scheme for an uplink multi-user scenario in which some users are opportunistically selected to help a covert user. In particular, the selected users emit interfering signals via an orthogonal resource dedicated to the covert user together with signals for their own communications using orthogonal resources allocated to the selected users, which helps the covert user hide the presence of the covert communication. For the covert communication scheme, we carry out extensive analysis and find system parameters in closed forms. The analytic derivation for the system parameters allow one to find the optimal combination of system parameters by performing a simple one-dimensional search. In addition, the analytic results elucidate relations among the system parameters. In particular, it will be proved that the optimal strategy for the non-covert users is an on-off scheme with equal transmit power. The theoretical results derived in this work are confirmed by comparing them with numerical results obtained with exhaustive searches. Finally, we demonstrate that the results of work can be utilized in versatile ways by demonstrating a design of covert communication with energy efficiency into account.Comment: 13 pages, 8 figures, This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    On The Robustness of Channel Allocation in Joint Radar And Communication Systems: An Auction Approach

    Full text link
    Joint radar and communication (JRC) is a promising technique for spectrum re-utilization, which enables radar sensing and data transmission to operate on the same frequencies and the same devices. However, due to the multi-objective property of JRC systems, channel allocation to JRC nodes should be carefully designed to maximize system performance. Additionally, because of the broadcast nature of wireless signals, a watchful adversary, i.e., a warden, can detect ongoing transmissions and attack the system. Thus, we develop a covert JRC system that minimizes the detection probability by wardens, in which friendly jammers are deployed to improve the covertness of the JRC nodes during radar sensing and data transmission operations. Furthermore, we propose a robust multi-item auction design for channel allocation for such a JRC system that considers the uncertainty in bids. The proposed auction mechanism achieves the properties of truthfulness, individual rationality, budget feasibility, and computational efficiency. The simulations clearly show the benefits of our design to support covert JRC systems and to provide incentive to the JRC nodes in obtaining spectrum, in which the auction-based channel allocation mechanism is robust against perturbations in the bids, which is highly effective for JRC nodes working in uncertain environments

    Achieving Covert Communication in Large-Scale SWIPT-Enabled D2D Networks

    Full text link
    We aim to secure a large-scale device-to-device (D2D) network against adversaries. The D2D network underlays a downlink cellular network to reuse the cellular spectrum and is enabled for simultaneous wireless information and power transfer (SWIPT). In the D2D network, the transmitters communicate with the receivers, and the receivers extract information and energy from their received radio-frequency (RF) signals. In the meantime, the adversaries aim to detect the D2D transmission. The D2D network applies power control and leverages the cellular signal to achieve covert communication (i.e., hide the presence of transmissions) so as to defend against the adversaries. We model the interaction between the D2D network and adversaries by using a two-stage Stackelberg game. Therein, the adversaries are the followers minimizing their detection errors at the lower stage and the D2D network is the leader maximizing its network utility constrained by the communication covertness and power outage at the upper stage. Both power splitting (PS)-based and time switch (TS)-based SWIPT schemes are explored. We characterize the spatial configuration of the large-scale D2D network, adversaries, and cellular network by stochastic geometry. We analyze the adversary's detection error minimization problem and adopt the Rosenbrock method to solve it, where the obtained solution is the best response from the lower stage. Taking into account the best response from the lower stage, we develop a bi-level algorithm to solve the D2D network's constrained network utility maximization problem and obtain the Stackelberg equilibrium. We present numerical results to reveal interesting insights
    • …
    corecore