612 research outputs found

    Connected Dominating Set Based Topology Control in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are now widely used for monitoring and controlling of systems where human intervention is not desirable or possible. Connected Dominating Sets (CDSs) based topology control in WSNs is one kind of hierarchical method to ensure sufficient coverage while reducing redundant connections in a relatively crowded network. Moreover, Minimum-sized Connected Dominating Set (MCDS) has become a well-known approach for constructing a Virtual Backbone (VB) to alleviate the broadcasting storm for efficient routing in WSNs extensively. However, no work considers the load-balance factor of CDSsin WSNs. In this dissertation, we first propose a new concept — the Load-Balanced CDS (LBCDS) and a new problem — the Load-Balanced Allocate Dominatee (LBAD) problem. Consequently, we propose a two-phase method to solve LBCDS and LBAD one by one and a one-phase Genetic Algorithm (GA) to solve the problems simultaneously. Secondly, since there is no performance ratio analysis in previously mentioned work, three problems are investigated and analyzed later. To be specific, the MinMax Degree Maximal Independent Set (MDMIS) problem, the Load-Balanced Virtual Backbone (LBVB) problem, and the MinMax Valid-Degree non Backbone node Allocation (MVBA) problem. Approximation algorithms and comprehensive theoretical analysis of the approximation factors are presented in the dissertation. On the other hand, in the current related literature, networks are deterministic where two nodes are assumed either connected or disconnected. In most real applications, however, there are many intermittently connected wireless links called lossy links, which only provide probabilistic connectivity. For WSNs with lossy links, we propose a Stochastic Network Model (SNM). Under this model, we measure the quality of CDSs using CDS reliability. In this dissertation, we construct an MCDS while its reliability is above a preset applicationspecified threshold, called Reliable MCDS (RMCDS). We propose a novel Genetic Algorithm (GA) with immigrant schemes called RMCDS-GA to solve the RMCDS problem. Finally, we apply the constructed LBCDS to a practical application under the realistic SNM model, namely data aggregation. To be specific, a new problem, Load-Balanced Data Aggregation Tree (LBDAT), is introduced finally. Our simulation results show that the proposed algorithms outperform the existing state-of-the-art approaches significantly

    Node Caching Enhancement of Reactive Ad Hoc Routing Protocol

    Get PDF
    Enhancing route request broadcasting protocols constitutes a substantial part of research in mobile ad hoc network routing. In the thesis, enhancements of ad hoc routing protocols, energy efficiency metrics and clustered topology generators are discussed. The contributions include the followings. First, a node caching enhancement of Ad-hoc On-demand Distance Vector (AODV) routing protocol is introduced. Extensive simulation studies of the enhanced AODV in NS2 shows up to 9-fold reduction in the routing overhead, up to 20% improvement in the packet delivery ratio and up to 60% reduction in the end-to-end delay. The largest improvement happens to highly stressed situations. Secondly, new metrics for evaluating energy efficiency of routing protocols are suggested. New node cached AODV protocols employing non-adaptive and adaptive load balancing techniques were proposed for extending network lifetime and increasing network throughput. Finally, the impact of node clustered topology on ad hoc network is explored. A novel method for generating clustered layout in NS2 is introduced and experiments indicate performance degradation of AODV protocols for the case of two clusters

    Enhancing Cooperation in MANET Using the Backbone Group Model (An Application of Maximum Coverage Problem)

    Get PDF
    AbstractMANET is a cooperative network in which every node is responsible for routing and forwarding as a result consumes more battery power and bandwidth. In order to save itself in terms of battery power and bandwidth noncooperation is genuine. Cooperation can be enhanced on the basis of reduction in resource consumption by involving a limited number of nodes in routing activities rather than all. To get accurate selection of nodes to define a backbone several works have been proposed in the literature. These works define a backbone with impractical assumptions that is not feasible for MANET. In this paper we have presented the Backbone Group (BG) model, which involve the minimum number of nodes called BG in routing activities instead of all. A BG is a minimal set of nodes that efficiently connects the network. We have divided a MANET in terms of the single hop neighborhood called locality group (LG). In a LG we have a cluster head (CH), a set of regular nodes (RNs) and one or more border nodes (BNs). The CHs are responsible for the creation and management of LG and BG. The CHs use a BG for a threshold time then switches to another BG, to involve all nodes in network participation. The proposed model shows its effectiveness in terms of reduction in routing overhead up to a ratio (n2: n2/k) where k is the number of LGs
    • …
    corecore