1,017 research outputs found

    Performance of Optimum Combining in a Poisson Field of Interferers and Rayleigh Fading Channels

    Full text link
    This paper studies the performance of antenna array processing in distributed multiple access networks without power control. The interference is represented as a Poisson point process. Desired and interfering signals are subject to both path-loss fading (with an exponent greater than 2) and to independent Rayleigh fading. Using these assumptions, we derive the exact closed form expression for the cumulative distribution function of the output signal-to-interference-plus-noise ratio when optimum combining is applied. This results in a pertinent measure of the network performance in terms of the outage probability, which in turn provides insights into the network capacity gain that could be achieved with antenna array processing. We present and discuss examples of applications, as well as some numerical results.Comment: Submitted to IEEE Trans. on Wireless Communication (Jan. 2009

    Random Access Transport Capacity

    Full text link
    We develop a new metric for quantifying end-to-end throughput in multihop wireless networks, which we term random access transport capacity, since the interference model presumes uncoordinated transmissions. The metric quantifies the average maximum rate of successful end-to-end transmissions, multiplied by the communication distance, and normalized by the network area. We show that a simple upper bound on this quantity is computable in closed-form in terms of key network parameters when the number of retransmissions is not restricted and the hops are assumed to be equally spaced on a line between the source and destination. We also derive the optimum number of hops and optimal per hop success probability and show that our result follows the well-known square root scaling law while providing exact expressions for the preconstants as well. Numerical results demonstrate that the upper bound is accurate for the purpose of determining the optimal hop count and success (or outage) probability.Comment: Submitted to IEEE Trans. on Wireless Communications, Sept. 200

    SINR profile for spectral efficiency optimization of SIC receivers in the many-user regime

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In dense wireless scenarios, and particularly under high traffic loads, the design of efficient random access protocols is necessary. Some candidate solutions are based on Direct- Sequence Spread Spectrum (DS-SS) combined with a Successive Interference Cancellation (SIC) demodulator, but the perfor- mance of these techniques is highly related to the distribution of the users received power. In that context, this paper presents a theoretical analysis to calculate the optimum user SINR profile at the decoder maximizing the spectral efficiency in bps/Hz for a specific modulation and practical Forward Error Correction (FEC) code. This solution is achieved by means of Variational Calculus operating in the asymptotic large-user case. Although a constant SINR function has been typically assumed in the literature (the one maximizing capacity), the theoretical results evidence that the optimum SINR profile must be an increasing function of the users received power. Its performance is compared with that of the uniform profile for two representative scenarios with different channel codes in a slightly overloaded system. The numerical results show that the optimum solution regulates the network load preventing the aggregate throughput from collapsing when the system is overloaded. In scenarios with a large number of transmitters, this optimum solution can be implemented in an uncoordinated manner with the knowledge of a few public system parameters.Peer ReviewedPostprint (published version

    Introducing Hierarchy in Energy Games

    Full text link
    In this work we introduce hierarchy in wireless networks that can be modeled by a decentralized multiple access channel and for which energy-efficiency is the main performance index. In these networks users are free to choose their power control strategy to selfishly maximize their energy-efficiency. Specifically, we introduce hierarchy in two different ways: 1. Assuming single-user decoding at the receiver, we investigate a Stackelberg formulation of the game where one user is the leader whereas the other users are assumed to be able to react to the leader's decisions; 2. Assuming neither leader nor followers among the users, we introduce hierarchy by assuming successive interference cancellation at the receiver. It is shown that introducing a certain degree of hierarchy in non-cooperative power control games not only improves the individual energy efficiency of all the users but can also be a way of insuring the existence of a non-saturated equilibrium and reaching a desired trade-off between the global network performance at the equilibrium and the requested amount of signaling. In this respect, the way of measuring the global performance of an energy-efficient network is shown to be a critical issue.Comment: Accepted for publication in IEEE Trans. on Wireless Communication
    corecore