1,611 research outputs found

    Maximizing Band Gaps in Two-Dimensional Photonic Crystals

    Get PDF

    Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    Get PDF
    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for \emph{robust} topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.Comment: 17 pages, 9 figures, submitted to Optics Expres

    Extremal Spectral Gaps for Periodic Schr\"odinger Operators

    Full text link
    The spectrum of a Schr\"odinger operator with periodic potential generally consists of bands and gaps. In this paper, for fixed m, we consider the problem of maximizing the gap-to-midgap ratio for the m-th spectral gap over the class of potentials which have fixed periodicity and are pointwise bounded above and below. We prove that the potential maximizing the m-th gap-to-midgap ratio exists. In one dimension, we prove that the optimal potential attains the pointwise bounds almost everywhere in the domain and is a step-function attaining the imposed minimum and maximum values on exactly m intervals. Optimal potentials are computed numerically using a rearrangement algorithm and are observed to be periodic. In two dimensions, we develop an efficient rearrangement method for this problem based on a semi-definite formulation and apply it to study properties of extremal potentials. We show that, provided a geometric assumption about the maximizer holds, a lattice of disks maximizes the first gap-to-midgap ratio in the infinite contrast limit. Using an explicit parametrization of two-dimensional Bravais lattices, we also consider how the optimal value varies over all equal-volume lattices.Comment: 34 pages, 14 figure

    'Hexagon-type' photonic crystal slabs based on SOI

    Get PDF
    In this paper we discuss the design of a novel category of photonic crystal slabs (PCS) and as an example, we consider structures based on SOI wafers. Fabrication issues related to lithographic accuracy are addressed, too. The geometry consists in a triangular lattice of hexagons having their symmetry axes rotated with respect to the lattice.We show that the mirror-symmetric 'hexagon-type' PCS with air claddings can have an absolute (i.e. polarization independent) gap in guided modes with normalized width of approximately 10%. This gap, although reduced to about 4%, is still present in an asymmetric geometry, when the under-cladding is a silicon oxide layer with deeply etched holes

    Dispersive Elastodynamics of 1D Banded Materials and Structures: Design

    Full text link
    Within periodic materials and structures, wave scattering and dispersion occur across constituent material interfaces leading to a banded frequency response. In an earlier paper, the elastodynamics of one-dimensional periodic materials and finite structures comprising these materials were examined with an emphasis on their frequency-dependent characteristics. In this work, a novel design paradigm is presented whereby periodic unit cells are designed for desired frequency band properties, and with appropriate scaling, these cells are used as building blocks for forming fully periodic or partially periodic structures with related dynamical characteristics. Through this multiscale dispersive design methodology, which is hierarchical and integrated, structures can be devised for effective vibration or shock isolation without needing to employ dissipative damping mechanisms. The speed of energy propagation in a designed structure can also be dictated through synthesis of the unit cells. Case studies are presented to demonstrate the effectiveness of the methodology for several applications. Results are given from sensitivity analyses that indicate a high level of robustness to geometric variation.Comment: 33 text pages, 27 figure
    • …
    corecore