12 research outputs found

    Deep learning for clinical decision support in oncology

    Get PDF
    In den letzten Jahrzehnten sind medizinische Bildgebungsverfahren wie die Computertomographie (CT) zu einem unersetzbaren Werkzeug moderner Medizin geworden, welche eine zeitnahe, nicht-invasive Begutachtung von Organen und Geweben ermöglichen. Die Menge an anfallenden Daten ist dabei rapide gestiegen, allein innerhalb der letzten Jahre um den Faktor 15, und aktuell verantwortlich fĂŒr 30 % des weltweiten Datenvolumens. Die Anzahl ausgebildeter Radiologen ist weitestgehend stabil, wodurch die medizinische Bildanalyse, angesiedelt zwischen Medizin und Ingenieurwissenschaften, zu einem schnell wachsenden Feld geworden ist. Eine erfolgreiche Anwendung verspricht Zeitersparnisse, und kann zu einer höheren diagnostischen QualitĂ€t beitragen. Viele Arbeiten fokussieren sich auf „Radiomics“, die Extraktion und Analyse von manuell konstruierten Features. Diese sind jedoch anfĂ€llig gegenĂŒber externen Faktoren wie dem Bildgebungsprotokoll, woraus Implikationen fĂŒr Reproduzierbarkeit und klinische Anwendbarkeit resultieren. In jĂŒngster Zeit sind Methoden des „Deep Learning“ zu einer hĂ€ufig verwendeten Lösung algorithmischer Problemstellungen geworden. Durch Anwendungen in Bereichen wie Robotik, Physik, Mathematik und Wirtschaft, wurde die Forschung im Bereich maschinellen Lernens wesentlich verĂ€ndert. Ein Kriterium fĂŒr den Erfolg stellt die VerfĂŒgbarkeit großer Datenmengen dar. Diese sind im medizinischen Bereich rar, da die Bilddaten strengen Anforderungen bezĂŒglich Datenschutz und Datensicherheit unterliegen, und oft heterogene QualitĂ€t, sowie ungleichmĂ€ĂŸige oder fehlerhafte Annotationen aufweisen, wodurch ein bedeutender Teil der Methoden keine Anwendung finden kann. Angesiedelt im Bereich onkologischer Bildgebung zeigt diese Arbeit Wege zur erfolgreichen Nutzung von Deep Learning fĂŒr medizinische Bilddaten auf. Mittels neuer Methoden fĂŒr klinisch relevante Anwendungen wie die SchĂ€tzung von LĂ€sionswachtum, Überleben, und Entscheidungkonfidenz, sowie Meta-Learning, Klassifikator-Ensembling, und Entscheidungsvisualisierung, werden Wege zur Verbesserungen gegenĂŒber State-of-the-Art-Algorithmen aufgezeigt, welche ein breites Anwendungsfeld haben. Hierdurch leistet die Arbeit einen wesentlichen Beitrag in Richtung einer klinischen Anwendung von Deep Learning, zielt auf eine verbesserte Diagnose, und damit letztlich eine verbesserte Gesundheitsversorgung insgesamt.Over the last decades, medical imaging methods, such as computed tomography (CT), have become an indispensable tool of modern medicine, allowing for a fast, non-invasive inspection of organs and tissue. Thus, the amount of acquired healthcare data has rapidly grown, increased 15-fold within the last years, and accounts for more than 30 % of the world's generated data volume. In contrast, the number of trained radiologists remains largely stable. Thus, medical image analysis, settled between medicine and engineering, has become a rapidly growing research field. Its successful application may result in remarkable time savings and lead to a significantly improved diagnostic performance. Many of the work within medical image analysis focuses on radiomics, i. e. the extraction and analysis of hand-crafted imaging features. Radiomics, however, has been shown to be highly sensitive to external factors, such as the acquisition protocol, having major implications for reproducibility and clinical applicability. Lately, deep learning has become one of the most employed methods for solving computational problems. With successful applications in diverse fields, such as robotics, physics, mathematics, and economy, deep learning has revolutionized the process of machine learning research. Having large amounts of training data is a key criterion for its successful application. These data, however, are rare within medicine, as medical imaging is subject to a variety of data security and data privacy regulations. Moreover, medical imaging data often suffer from heterogeneous quality, label imbalance, and label noise, rendering a considerable fraction of deep learning-based algorithms inapplicable. Settled in the field of CT oncology, this work addresses these issues, showing up ways to successfully handle medical imaging data using deep learning. It proposes novel methods for clinically relevant tasks, such as lesion growth and patient survival prediction, confidence estimation, meta-learning and classifier ensembling, and finally deep decision explanation, yielding superior performance in comparison to state-of-the-art approaches, and being applicable to a wide variety of applications. With this, the work contributes towards a clinical translation of deep learning-based algorithms, aiming for an improved diagnosis, and ultimately overall improved patient healthcare

    Verbing and nouning in French : toward an ecologically valid approach to sentence processing

    Full text link
    La présente thèse utilise la technique des potentiels évoqués afin d’étudier les méchanismes neurocognitifs qui sous-tendent la compréhension de la phrase. Plus particulièrement, cette recherche vise à clarifier l’interaction entre les processus syntaxiques et sémantiques chez les locuteurs natifs et les apprenants d’une deuxième langue (L2). Le modèle “syntaxe en premier” (Friederici, 2002, 2011) prédit que les catégories syntaxiques sont analysées de façon précoce: ce stade est reflété par la composante ELAN (Early anterior negativity, Négativité antérieure gauche), qui est induite par les erreurs de catégorie syntaxique. De plus, ces erreurs semblent empêcher l’apparition de la composante N400 qui reflète les processus lexico-sémantiques. Ce phénomène est défini comme le bloquage sémantique (Friederici et al., 1999). Cependant, la plupart des études qui observent la ELAN utilisent des protocoles expérimentaux problématiques dans lesquels les différences entre les contextes qui précèdent la cible pourraient être à l’origine de résultats fallacieux expliquant à la fois l’apparente “ELAN” et l’absence de N400 (Steinhauer & Drury, 2012). La première étude rééevalue l’approche de la “syntaxe en premier” en adoptant un paradigme expériemental novateur en français qui introduit des erreurs de catégorie syntaxique et les anomalies de sémantique lexicale. Ce dessin expérimental équilibré contrôle à la fois le mot-cible (nom vs. verbe) et le contexte qui le précède. Les résultats récoltés auprès de locuteurs natifs du français québécois ont révélé un complexe N400-P600 en réponse à toutes les anomalies, en contradiction avec les prédictions du modèle de Friederici. Les effets additifs des manipulations syntaxique et sémantique sur la N400 suggèrent la détection d’une incohérence entre la racine du mot qui avait été prédite et la cible, d’une part, et l’activation lexico-sémantique, d’autre part. Les réponses individuelles se sont pas caractérisées par une dominance vers la N400 ou la P600: au contraire, une onde biphasique est présente chez la majorité des participants. Cette activation peut donc être considérée comme un index fiable des mécanismes qui sous-tendent le traitement des structures syntagmatiques. La deuxième étude se concentre sur les même processus chez les apprenants tardifs du français L2. L’hypothèse de la convergence (Green, 2003 ; Steinhauer, 2014) prédit que les apprenants d’une L2, s’ils atteignent un niveau avancé, mettent en place des processus de traitement en ligne similaires aux locuteurs natifs. Cependant, il est difficile de considérer en même temps un grand nombre de facteurs qui se rapportent à leurs compétences linguistiques, à l’exposition à la L2 et à l’âge d’acquisition. Cette étude continue d’explorer les différences inter-individuelles en modélisant les données de potentiels-évoqués avec les Forêts aléatoires, qui ont révélé que le pourcentage d’explosition au français ansi que le niveau de langue sont les prédicteurs les plus fiables pour expliquer les réponses électrophysiologiques des participants. Plus ceux-ci sont élevés, plus l’amplitude des composantes N400 et P600 augmente, ce qui confirme en partie les prédictions faites par l’hypothèse de la convergence. En conclusion, le modèle de la “syntaxe en premier” n’est pas viable et doit être remplacé. Nous suggérons un nouveau paradigme basé sur une approche prédictive, où les informations sémantiques et syntaxiques sont activées en parallèle dans un premier temps, puis intégrées via un recrutement de mécanismes contrôlés. Ces derniers sont modérés par les capacités inter-individuelles reflétées par l’exposition et la performance.The present thesis uses event-related potentials (ERPs) to investigate neurocognitve mechanisms underlying sentence comprehension. In particular, these two experiments seek to clarify the interplay between syntactic and semantic processes in native speakers and second language learners. Friederici’s (2002, 2011) “syntax-first” model predicts that syntactic categories are analyzed at the earliest stages of speech perception reflected by the ELAN (Early left anterior negativity), reported for syntactic category violations. Further, syntactic category violations seem to prevent the appearance of N400s (linked to lexical-semantic processing), a phenomenon known as “semantic blocking” (Friederici et al., 1999). However, a review article by Steinhauer and Drury (2012) argued that most ELAN studies used flawed designs, where pre-target context differences may have caused ELAN-like artifacts as well as the absence of N400s. The first study reevaluates syntax-first approaches to sentence processing by implementing a novel paradigm in French that included correct sentences, pure syntactic category violations, lexical-semantic anomalies, and combined anomalies. This balanced design systematically controlled for target word (noun vs. verb) and the context immediately preceding it. Group results from native speakers of Quebec French revealed an N400-P600 complex in response to all anomalous conditions, providing strong evidence against the syntax-first and semantic blocking hypotheses. Additive effects of syntactic category and lexical-semantic anomalies on the N400 may reflect a mismatch detection between a predicted word-stem and the actual target, in parallel with lexical-semantic retrieval. An interactive rather than additive effect on the P600 reveals that the same neurocognitive resources are recruited for syntactic and semantic integration. Analyses of individual data showed that participants did not rely on one single cognitive mechanism reflected by either the N400 or the P600 effect but on both, suggesting that the biphasic N400-P600 ERP wave can indeed be considered to be an index of phrase-structure violation processing in most individuals. The second study investigates the underlying mechanisms of phrase-structure building in late second language learners of French. The convergence hypothesis (Green, 2003; Steinhauer, 2014) predicts that second language learners can achieve native-like online- processing with sufficient proficiency. However, considering together different factors that relate to proficiency, exposure, and age of acquisition has proven challenging. This study further explores individual data modeling using a Random Forests approach. It revealed that daily usage and proficiency are the most reliable predictors in explaining the ERP responses, with N400 and P600 effects getting larger as these variables increased, partly confirming and extending the convergence hypothesis. This thesis demonstrates that the “syntax-first” model is not viable and should be replaced. A new account is suggested, based on predictive approaches, where semantic and syntactic information are first used in parallel to facilitate retrieval, and then controlled mechanisms are recruited to analyze sentences at the interface of syntax and semantics. Those mechanisms are mediated by inter-individual abilities reflected by language exposure and performance

    Toward Understanding Human Expression in Human-Robot Interaction

    Get PDF
    Intelligent devices are quickly becoming necessities to support our activities during both work and play. We are already bound in a symbiotic relationship with these devices. An unfortunate effect of the pervasiveness of intelligent devices is the substantial investment of our time and effort to communicate intent. Even though our increasing reliance on these intelligent devices is inevitable, the limits of conventional methods for devices to perceive human expression hinders communication efficiency. These constraints restrict the usefulness of intelligent devices to support our activities. Our communication time and effort must be minimized to leverage the benefits of intelligent devices and seamlessly integrate them into society. Minimizing the time and effort needed to communicate our intent will allow us to concentrate on tasks in which we excel, including creative thought and problem solving. An intuitive method to minimize human communication effort with intelligent devices is to take advantage of our existing interpersonal communication experience. Recent advances in speech, hand gesture, and facial expression recognition provide alternate viable modes of communication that are more natural than conventional tactile interfaces. Use of natural human communication eliminates the need to adapt and invest time and effort using less intuitive techniques required for traditional keyboard and mouse based interfaces. Although the state of the art in natural but isolated modes of communication achieves impressive results, significant hurdles must be conquered before communication with devices in our daily lives will feel natural and effortless. Research has shown that combining information between multiple noise-prone modalities improves accuracy. Leveraging this complementary and redundant content will improve communication robustness and relax current unimodal limitations. This research presents and evaluates a novel multimodal framework to help reduce the total human effort and time required to communicate with intelligent devices. This reduction is realized by determining human intent using a knowledge-based architecture that combines and leverages conflicting information available across multiple natural communication modes and modalities. The effectiveness of this approach is demonstrated using dynamic hand gestures and simple facial expressions characterizing basic emotions. It is important to note that the framework is not restricted to these two forms of communication. The framework presented in this research provides the flexibility necessary to include additional or alternate modalities and channels of information in future research, including improving the robustness of speech understanding. The primary contributions of this research include the leveraging of conflicts in a closed-loop multimodal framework, explicit use of uncertainty in knowledge representation and reasoning across multiple modalities, and a flexible approach for leveraging domain specific knowledge to help understand multimodal human expression. Experiments using a manually defined knowledge base demonstrate an improved average accuracy of individual concepts and an improved average accuracy of overall intents when leveraging conflicts as compared to an open-loop approach

    Perception of Unstructured Environments for Autonomous Off-Road Vehicles

    Get PDF
    Autonome Fahrzeuge benötigen die FĂ€higkeit zur Perzeption als eine notwendige Voraussetzung fĂŒr eine kontrollierbare und sichere Interaktion, um ihre Umgebung wahrzunehmen und zu verstehen. Perzeption fĂŒr strukturierte Innen- und Außenumgebungen deckt wirtschaftlich lukrative Bereiche, wie den autonomen Personentransport oder die Industrierobotik ab, wĂ€hrend die Perzeption unstrukturierter Umgebungen im Forschungsfeld der Umgebungswahrnehmung stark unterreprĂ€sentiert ist. Die analysierten unstrukturierten Umgebungen stellen eine besondere Herausforderung dar, da die vorhandenen, natĂŒrlichen und gewachsenen Geometrien meist keine homogene Struktur aufweisen und Ă€hnliche Texturen sowie schwer zu trennende Objekte dominieren. Dies erschwert die Erfassung dieser Umgebungen und deren Interpretation, sodass Perzeptionsmethoden speziell fĂŒr diesen Anwendungsbereich konzipiert und optimiert werden mĂŒssen. In dieser Dissertation werden neuartige und optimierte Perzeptionsmethoden fĂŒr unstrukturierte Umgebungen vorgeschlagen und in einer ganzheitlichen, dreistufigen Pipeline fĂŒr autonome GelĂ€ndefahrzeuge kombiniert: Low-Level-, Mid-Level- und High-Level-Perzeption. Die vorgeschlagenen klassischen Methoden und maschinellen Lernmethoden (ML) zur Perzeption bzw.~Wahrnehmung ergĂ€nzen sich gegenseitig. DarĂŒber hinaus ermöglicht die Kombination von Perzeptions- und Validierungsmethoden fĂŒr jede Ebene eine zuverlĂ€ssige Wahrnehmung der möglicherweise unbekannten Umgebung, wobei lose und eng gekoppelte Validierungsmethoden kombiniert werden, um eine ausreichende, aber flexible Bewertung der vorgeschlagenen Perzeptionsmethoden zu gewĂ€hrleisten. Alle Methoden wurden als einzelne Module innerhalb der in dieser Arbeit vorgeschlagenen Perzeptions- und Validierungspipeline entwickelt, und ihre flexible Kombination ermöglicht verschiedene Pipelinedesigns fĂŒr eine Vielzahl von GelĂ€ndefahrzeugen und AnwendungsfĂ€llen je nach Bedarf. Low-Level-Perzeption gewĂ€hrleistet eine eng gekoppelte Konfidenzbewertung fĂŒr rohe 2D- und 3D-Sensordaten, um SensorausfĂ€lle zu erkennen und eine ausreichende Genauigkeit der Sensordaten zu gewĂ€hrleisten. DarĂŒber hinaus werden neuartige Kalibrierungs- und RegistrierungsansĂ€tze fĂŒr Multisensorsysteme in der Perzeption vorgestellt, welche lediglich die Struktur der Umgebung nutzen, um die erfassten Sensordaten zu registrieren: ein halbautomatischer Registrierungsansatz zur Registrierung mehrerer 3D~Light Detection and Ranging (LiDAR) Sensoren und ein vertrauensbasiertes Framework, welches verschiedene Registrierungsmethoden kombiniert und die Registrierung verschiedener Sensoren mit unterschiedlichen Messprinzipien ermöglicht. Dabei validiert die Kombination mehrerer Registrierungsmethoden die Registrierungsergebnisse in einer eng gekoppelten Weise. Mid-Level-Perzeption ermöglicht die 3D-Rekonstruktion unstrukturierter Umgebungen mit zwei Verfahren zur SchĂ€tzung der DisparitĂ€t von Stereobildern: ein klassisches, korrelationsbasiertes Verfahren fĂŒr Hyperspektralbilder, welches eine begrenzte Menge an Test- und Validierungsdaten erfordert, und ein zweites Verfahren, welches die DisparitĂ€t aus Graustufenbildern mit neuronalen Faltungsnetzen (CNNs) schĂ€tzt. Neuartige DisparitĂ€tsfehlermetriken und eine Evaluierungs-Toolbox fĂŒr die 3D-Rekonstruktion von Stereobildern ergĂ€nzen die vorgeschlagenen Methoden zur DisparitĂ€tsschĂ€tzung aus Stereobildern und ermöglichen deren lose gekoppelte Validierung. High-Level-Perzeption konzentriert sich auf die Interpretation von einzelnen 3D-Punktwolken zur Befahrbarkeitsanalyse, Objekterkennung und Hindernisvermeidung. Eine DomĂ€nentransferanalyse fĂŒr State-of-the-art-Methoden zur semantischen 3D-Segmentierung liefert Empfehlungen fĂŒr eine möglichst exakte Segmentierung in neuen ZieldomĂ€nen ohne eine Generierung neuer Trainingsdaten. Der vorgestellte Trainingsansatz fĂŒr 3D-Segmentierungsverfahren mit CNNs kann die benötigte Menge an Trainingsdaten weiter reduzieren. Methoden zur ErklĂ€rbarkeit kĂŒnstlicher Intelligenz vor und nach der Modellierung ermöglichen eine lose gekoppelte Validierung der vorgeschlagenen High-Level-Methoden mit Datensatzbewertung und modellunabhĂ€ngigen ErklĂ€rungen fĂŒr CNN-Vorhersagen. Altlastensanierung und MilitĂ€rlogistik sind die beiden HauptanwendungsfĂ€lle in unstrukturierten Umgebungen, welche in dieser Arbeit behandelt werden. Diese Anwendungsszenarien zeigen auch, wie die LĂŒcke zwischen der Entwicklung einzelner Methoden und ihrer Integration in die Verarbeitungskette fĂŒr autonome GelĂ€ndefahrzeuge mit Lokalisierung, Kartierung, Planung und Steuerung geschlossen werden kann. Zusammenfassend lĂ€sst sich sagen, dass die vorgeschlagene Pipeline flexible Perzeptionslösungen fĂŒr autonome GelĂ€ndefahrzeuge bietet und die begleitende Validierung eine exakte und vertrauenswĂŒrdige Perzeption unstrukturierter Umgebungen gewĂ€hrleistet

    Adaptiveness, Asynchrony, and Resource Efficiency in Parallel Stochastic Gradient Descent

    Get PDF
    Accelerated digitalization and sensor deployment in society in recent years poses critical challenges for associated data processing and analysis infrastructure to scale, and the field of big data, targeting methods for storing, processing, and revealing patterns in huge data sets, has surged. Artificial Intelligence (AI) models are used diligently in standard Big Data pipelines due to their tremendous success across various data analysis tasks, however exponential growth in Volume, Variety and Velocity of Big Data (known as its three V’s) in recent years require associated complexity in the AI models that analyze it, as well as the Machine Learning (ML) processes required to train them. In order to cope, parallelism in ML is standard nowadays, with the aim to better utilize contemporary computing infrastructure, whether it being shared-memory multi-core CPUs, or vast connected networks of IoT devices engaging in Federated Learning (FL).Stochastic Gradient Descent (SGD) serves as the backbone of many of the most popular ML methods, including in particular Deep Learning. However, SGD has inherently sequential semantics, and is not trivially parallelizable without imposing strict synchronization, with associated bottlenecks. Asynchronous SGD (AsyncSGD), which relaxes the original semantics, has gained significant interest in recent years due to promising results that show speedup in certain contexts. However, the relaxed semantics that asynchrony entails give rise to fundamental questions regarding AsyncSGD, relating particularly to its stability and convergence rate in practical applications.This thesis explores vital knowledge gaps of AsyncSGD, and contributes in particular to: Theoretical frameworks – Formalization of several key notions related to the impact of asynchrony on the convergence, guiding future development of AsyncSGD implementations; Analytical results – Asymptotic convergence bounds under realistic assumptions. Moreover, several technical solutions are proposed, targeting in particular: Stability – Reducing the number of non-converging executions and the associated wasted energy; Speedup – Improving convergence time and reliability with instance-based adaptiveness; Elasticity – Resource-efficiency by avoiding over-parallelism, and thereby improving stability and saving computing resources. The proposed methods are evaluated on several standard DL benchmarking applications and compared to relevant baselines from previous literature. Key results include: (i) persistent speedup compared to baselines, (ii) increased stability and reduced risk for non-converging executions, (iii) reduction in the overall memory footprint (up to 17%), as well as the consumed computing resources (up to 67%).In addition, along with this thesis, an open-source implementation is published, that connects high-level ML operations with asynchronous implementations with fine-grained memory operations, leveraging future research for efficient adaptation of AsyncSGD for practical applications

    Analysis of MRI for Knee Osteoarthritis using Machine Learning

    No full text
    Approximately 8.5 million people in the UK (13.5% of the population) have osteoarthritis (OA) in one or both knees, with more than 6 million people in the UK suffering with painful osteoarthritis of the knee. In addition, an ageing population implies that an estimated 17 million people (twice as many as in 2012) are likely to be living with OA by 2030. Despite this, there exists no disease modifying drugs for OA and structural OA in MRI is poorly characterised. This motivates research to develop biomarkers and tools to aid osteoarthritis diagnosis from MRI of the knee. Previously many solutions for learning biomarkers have relied upon hand-crafted features to characterise and diagnose osteoarthritis from MRI. The methods proposed in this thesis are scalable and use machine learning to characterise large populations of the OAI dataset, with one experiment applying an algorithm to over 10,000 images. Studies of this size enable subtle characteristics of the dataset to be learnt and model many variations within a population. We present data-driven algorithms to learn features to predict OA from the appearance of the articular cartilage. An unsupervised manifold learning algorithm is used to compute a low dimensional representation of knee MR data which we propose as an imaging marker of OA. Previous metrics introduced for OA diagnosis are loosely based on the research communities intuition of the structural causes of OA progression, including morphological measures of the articular cartilage such as the thickness and volume. We demonstrate that there is a strong correlation between traditional morphological measures of the articular cartilage and the biomarkers identified using the manifold learning algorithm that we propose (R 2 = 0.75). The algorithm is extended to create biomarkers for different regions and sequences. A combination of these markers is proposed to yield a diagnostic imaging biomarker with superior performance. The diagnostic biomarkers presented are shown to improve upon hand-crafted morphological measure of disease status presented in the literature, a linear discriminant analysis (LDA) classification for early stage diagnosis of knee osteoarthritis results with an AUC of 0.9. From the biomarker discovery experiments we identified that intensity based affine registration of knee MRIs is not sufficiently robust for large scale image analysis, approximately 5% of these registrations fail. We have developed fast algorithms to compute robust affine transformations of knee MRI, which enables accurate pairwise registrations in large datasets. We model the population of images as a non-linear manifold, a registration is defined by the shortest geodesic path over the manifold representation. We identify sources of error in our manifold representation and propose fast mitigation strategies by checking for consistency across the manifold and by utilising multiple paths. These mitigation strategies are shown to improve registration accuracy and can be computed in less than 2 seconds with current architecture.Open Acces

    The Multi-Agent Transport Simulation MATSim

    Get PDF
    "The MATSim (Multi-Agent Transport Simulation) software project was started around 2006 with the goal of generating traffic and congestion patterns by following individual synthetic travelers through their daily or weekly activity programme. It has since then evolved from a collection of stand-alone C++ programs to an integrated Java-based framework which is publicly hosted, open-source available, automatically regression tested. It is currently used by about 40 groups throughout the world. This book takes stock of the current status. The first part of the book gives an introduction to the most important concepts, with the intention of enabling a potential user to set up and run basic simulations.The second part of the book describes how the basic functionality can be extended, for example by adding schedule-based public transit, electric or autonomous cars, paratransit, or within-day replanning. For each extension, the text provides pointers to the additional documentation and to the code base. It is also discussed how people with appropriate Java programming skills can write their own extensions, and plug them into the MATSim core. The project has started from the basic idea that traffic is a consequence of human behavior, and thus humans and their behavior should be the starting point of all modelling, and with the intuition that when simulations with 100 million particles are possible in computational physics, then behavior-oriented simulations with 10 million travelers should be possible in travel behavior research. The initial implementations thus combined concepts from computational physics and complex adaptive systems with concepts from travel behavior research. The third part of the book looks at theoretical concepts that are able to describe important aspects of the simulation system; for example, under certain conditions the code becomes a Monte Carlo engine sampling from a discrete choice model. Another important aspect is the interpretation of the MATSim score as utility in the microeconomic sense, opening up a connection to benefit cost analysis. Finally, the book collects use cases as they have been undertaken with MATSim. All current users of MATSim were invited to submit their work, and many followed with sometimes crisp and short and sometimes longer contributions, always with pointers to additional references. We hope that the book will become an invitation to explore, to build and to extend agent-based modeling of travel behavior from the stable and well tested core of MATSim documented here.

    Proceedings of the 5th MIT/ONR Workshop on C[3] Systems, held at Naval Postgraduate School, Monterey, California, August 23 to 27, 1982

    Get PDF
    "December 1982."Includes bibliographies and index.Office of Naval Research Contract no. ONR/N00014-77-C-0532 NR041-519edited by Michael Athans ... [et al.]
    corecore