5,340 research outputs found

    Improving the lifetime of two-tiered sensor networks using genetic algorithm

    Get PDF
    Wireless sensor networks have been envisioned to have a wide range of applications which consist of many inexpensive and low-powered wireless nodes which are used to sense, gather, and transmit the data towards the base station. In Two-Tiered wireless sensor networks, nodes are grouped into clusters, with a minimum of one cluster-head to distribute the work load among the member nodes. In the recent years, higher-powered relay nodes have been proposed to act as cluster heads and these relay nodes form a network among themselves in order to improve the lifetime of the sensor networks. Since the nodes are generally energy constrained, efficient management of the network data communication scheme can maximize the lifetime of the networks. A Genetic Algorithm is the technique for randomized search and optimization which is based on Darwin\u27s Principal of Natural Selection. In this paper, we have proposed a Genetic Algorithm based solution for scheduling the data gathering of relay nodes that can significantly extend the lifetime of the relay node network. We have simulated our method on 15 different sizes of networks and measured the lifetime of the network as the number of rounds, until the first relay node runs out of battery power. For smaller networks, where the global optimum can be determined, our genetic algorithm based approach is always able to find the optimal solution with a lesser program run-time. For larger networks, we have compared our approach with traditional routing schemes and shown that our method leads to significant improvements

    Pheromone-based In-Network Processing for wireless sensor network monitoring systems

    Get PDF
    Monitoring spatio-temporal continuous fields using wireless sensor networks (WSNs) has emerged as a novel solution. An efficient data-driven routing mechanism for sensor querying and information gathering in large-scale WSNs is a challenging problem. In particular, we consider the case of how to query the sensor network information with the minimum energy cost in scenarios where a small subset of sensor nodes has relevant readings. In order to deal with this problem, we propose a Pheromone-based In-Network Processing (PhINP) mechanism. The proposal takes advantages of both a pheromone-based iterative strategy to direct queries towards nodes with relevant information and query- and response-based in-network filtering to reduce the number of active nodes. Additionally, we apply reinforcement learning to improve the performance. The main contribution of this work is the proposal of a simple and efficient mechanism for information discovery and gathering. It can reduce the messages exchanged in the network, by allowing some error, in order to maximize the network lifetime. We demonstrate by extensive simulations that using PhINP mechanism the query dissemination cost can be reduced by approximately 60% over flooding, with an error below 1%, applying the same in-network filtering strategy.Fil: Riva, Guillermo Gaston. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Finochietto, Jorge Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Estudios Avanzados en Ingeniería y Tecnología. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Estudios Avanzados en Ingeniería y Tecnología; Argentin

    Traffic based energy consumption optimisation to improve the lifetime and performance of ad hoc wireless sensor networks

    Get PDF
    Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes

    Power efficient data gathering and aggregation in wireless sensor networks

    Get PDF
    Recent developments in processor, memory and radio technology have enabled wireless sensor networks which are deployed to collect useful information from an area of interest The sensed data must be gathered and transmitted to a base station where it is further processed for end-user queries. Since the network consists of low-cost nodes with limited battery power, power efficient methods must be employed for data gathering and aggregation in order to achieve long network lifetimes. In an environment where in a round of communication each of the sensor nodes has data to send to a base station, it is important to minimize the total energy consumed by the system in a round so that the system lifetime is maximized. With the use of data fusion and aggregation techniques, while minimizing the total energy per round, if power consumption per node can be balanced as well, a near optimal data gathering and routing scheme can be achieved in terms of network lifetime. So far, besides the conventional protocol of direct transmission, two elegant protocols called LEACH and PEGASIS have been proposed to maximize the lifetime of a sensor network. In this paper, we propose two new algorithms under name PEDAP (Power Efficient Data gathering and Aggregation Protocol), which are near optimal minimum spanning tree based routing schemes, where one of them is the power-aware version of the other. Our simulation results show that our algorithms perform well both in systems where base station is far away from and where it is in the center of the field. PEDAP achieves between 4x to 20x improvement in network lifetime compared with LEACH, and about three times improvement compared with PEGASIS

    Exploiting affinity propagation for energy-efficient information discovery in sensor networks

    Full text link
    Wireless sensor networks (WSN) are attractive for information gathering in large-scale data rich environments. Emerging WSN applications require dissemination of information to interested clients within the network requiring support for differing traffic patterns. Further, in-network query processing capabilities are required for autonomic information discovery. In this paper, we formulate the information discovery problem as a load-balancing problem, with the combined aim being to maximize network lifetime and minimize query processing delay. We propose novel methods for data dissemination, information discovery and data aggregation that are designed to provide significant QoS benefits. We make use of affinity propagation to group &quot;similar&quot; sensors and have developed efficient mechanisms that can resolve both ALL-type and ANY-type queries in-network with improved energy-efficiency and query resolution time. Simulation results prove the proposed method(s) of information discovery offer significant QoS benefits for ALL-type and ANY-type queries in comparison to previous approaches.<br /
    corecore