454 research outputs found

    Further topics in connectivity

    Get PDF
    Continuing the study of connectivity, initiated in §4.1 of the Handbook, we survey here some (sufficient) conditions under which a graph or digraph has a given connectivity or edge-connectivity. First, we describe results concerning maximal (vertex- or edge-) connectivity. Next, we deal with conditions for having (usually lower) bounds for the connectivity parameters. Finally, some other general connectivity measures, such as one instance of the so-called “conditional connectivity,” are considered. For unexplained terminology concerning connectivity, see §4.1.Peer ReviewedPostprint (published version

    Partition MCMC for inference on acyclic digraphs

    Full text link
    Acyclic digraphs are the underlying representation of Bayesian networks, a widely used class of probabilistic graphical models. Learning the underlying graph from data is a way of gaining insights about the structural properties of a domain. Structure learning forms one of the inference challenges of statistical graphical models. MCMC methods, notably structure MCMC, to sample graphs from the posterior distribution given the data are probably the only viable option for Bayesian model averaging. Score modularity and restrictions on the number of parents of each node allow the graphs to be grouped into larger collections, which can be scored as a whole to improve the chain's convergence. Current examples of algorithms taking advantage of grouping are the biased order MCMC, which acts on the alternative space of permuted triangular matrices, and non ergodic edge reversal moves. Here we propose a novel algorithm, which employs the underlying combinatorial structure of DAGs to define a new grouping. As a result convergence is improved compared to structure MCMC, while still retaining the property of producing an unbiased sample. Finally the method can be combined with edge reversal moves to improve the sampler further.Comment: Revised version. 34 pages, 16 figures. R code available at https://github.com/annlia/partitionMCM

    2-Vertex Connectivity in Directed Graphs

    Full text link
    We complement our study of 2-connectivity in directed graphs, by considering the computation of the following 2-vertex-connectivity relations: We say that two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths from v to w and two internally vertex-disjoint paths from w to v. We also say that v and w are vertex-resilient if the removal of any vertex different from v and w leaves v and w in the same strongly connected component. We show how to compute the above relations in linear time so that we can report in constant time if two vertices are 2-vertex-connected or if they are vertex-resilient. We also show how to compute in linear time a sparse certificate for these relations, i.e., a subgraph of the input graph that has O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304

    On the strong partition dimension of graphs

    Full text link
    We present a different way to obtain generators of metric spaces having the property that the ``position'' of every element of the space is uniquely determined by the distances from the elements of the generators. Specifically we introduce a generator based on a partition of the metric space into sets of elements. The sets of the partition will work as the new elements which will uniquely determine the position of each single element of the space. A set WW of vertices of a connected graph GG strongly resolves two different vertices x,yWx,y\notin W if either dG(x,W)=dG(x,y)+dG(y,W)d_G(x,W)=d_G(x,y)+d_G(y,W) or dG(y,W)=dG(y,x)+dG(x,W)d_G(y,W)=d_G(y,x)+d_G(x,W), where dG(x,W)=min{d(x,w)  :  wW}d_G(x,W)=\min\left\{d(x,w)\;:\;w\in W\right\}. An ordered vertex partition Π={U1,U2,...,Uk}\Pi=\left\{U_1,U_2,...,U_k\right\} of a graph GG is a strong resolving partition for GG if every two different vertices of GG belonging to the same set of the partition are strongly resolved by some set of Π\Pi. A strong resolving partition of minimum cardinality is called a strong partition basis and its cardinality the strong partition dimension. In this article we introduce the concepts of strong resolving partition and strong partition dimension and we begin with the study of its mathematical properties. We give some realizability results for this parameter and we also obtain tight bounds and closed formulae for the strong metric dimension of several graphs.Comment: 16 page
    corecore