77 research outputs found

    On the use of observation equivalence in synthesis abstraction

    Get PDF
    In a previous paper we introduced the notion of synthesis abstraction, which allows efficient compositional synthesis of maximally permissive supervisors for large-scale systems of composed finite-state automata. In the current paper, observation equivalence is studied in relation to synthesis abstraction. It is shown that general observation equivalence is not useful for synthesis abstraction. Instead, we introduce additional conditions strengthening observation equivalence, so that it can be used with the compositional synthesis method. The paper concludes with an example showing the suitability of these relations to achieve substantial state reduction while computing a modular supervisor

    Hierarchical agent supervision

    Get PDF
    Agent supervision is a form of control/customization where a supervisor restricts the behavior of an agent to enforce certain requirements, while leaving the agent as much autonomy as possible. To facilitate supervision, it is often of interest to consider hierarchical models where a high level abstracts over low-level behavior details. We study hierarchical agent supervision in the context of the situation calculus and the ConGolog agent programming language, where we have a rich first-order representation of the agent state. We define the constraints that ensure that the controllability of in-dividual actions at the high level in fact captures the controllability of their implementation at the low level. On the basis of this, we show that we can obtain the maximally permissive supervisor by first considering only the high-level model and obtaining a high- level supervisor and then refining its actions locally, thus greatly simplifying the supervisor synthesis task

    Nondeterministic Strategies and their Refinement in Strategy Logic

    Get PDF
    Nondeterministic strategies are strategies (or protocols, or plans) that, given a history in a game, assign a set of possible actions, all of which are winning. An important problem is that of refining such strategies. For instance, given a nondeterministic strategy that allows only safe executions, refine it to, additionally, eventually reach a desired state of affairs. We show that strategic problems involving strategy refinement can be solved elegantly in the framework of Strategy Logic (SL), a very expressive logic to reason about strategic abilities. Specifically, we introduce an extension of SL with nondeterministic strategies and an operator expressing strategy refinement. We show that model checking this logic can be done at no additional computational cost with respect to standard SL, and can be used to solve a variety of problems such as synthesis of maximally permissive strategies or refinement of Nash equilibria

    Supervision equivalence

    Get PDF
    This paper presents a general framework for modular synthesis of supervisors for discrete event systems. The approach is based on compositional minimisation, using concepts of process equivalence. Its result is a compact representation of a least restrictive supervisor that ensures controllability and nonblocking. The method is demonstrated to reduce the number of states to be constructed for a simple manufacturing example, and the framework is proven to be sound

    A survey on compositional algorithms for verification and synthesis in supervisory control

    Get PDF
    This survey gives an overview of the current research on compositional algorithms for verification and synthesis of modular systems modelled as interacting finite-state machines. Compositional algorithms operate by repeatedly simplifying individual components of a large system, replacing them by smaller so-called abstractions, while preserving critical properties. In this way, the exponential growth of the state space can be limited, making it possible to analyse much bigger state spaces than possible by standard state space exploration. This paper gives an introduction to the principles underlying compositional methods, followed by a survey of algorithmic solutions from the recent literature that use compositional methods to analyse systems automatically. The focus is on applications in supervisory control of discrete event systems, particularly on methods that verify critical properties or synthesise controllable and nonblocking supervisors

    Three variations of observation equivalence preserving synthesis abstraction

    Get PDF
    In a previous paper we introduced the notion of synthesis abstraction, which allows efficient compositional synthesis of maximally permissive supervisors for large-scale systems of composed finite-state automata. In the current paper, observation equivalence is studied in relation to synthesis abstraction. It is shown that general observation equivalence is not useful for synthesis abstraction. Instead, we introduce additional conditions strengthening observation equivalence, so that it can be used with the compositional synthesis method. The paper concludes with an example showing the suitability of these relations to achieve substantial state reduction while computing a modular supervisor
    corecore