6,733 research outputs found

    Stability of Higher-Dimensional Schwarzschild Black Holes

    Full text link
    We investigate the classical stability of the higher-dimensional Schwarzschild black holes against linear perturbations, in the framework of a gauge-invariant formalism for gravitational perturbations of maximally symmetric black holes, recently developed by the authors. The perturbations are classified into the tensor, vector, and scalar-type modes according to their tensorial behaviour on the spherical section of the background metric, where the last two modes correspond respectively to the axial- and the polar-mode in the four-dimensional situation. We show that, for each mode of the perturbations, the spatial derivative part of the master equation is a positive, self-adjoint operator in the L2L^2-Hilbert space, hence that the master equation for each tensorial type of perturbations does not admit normalisable negative-modes which would describe unstable solutions. On the same Schwarzschild background, we also analyse the static perturbation of the scalar mode, and show that there exists no static perturbation which is regular everywhere outside the event horizon and well-behaved at spatial infinity. This checks the uniqueness of the higher-dimensional spherically symmetric, static, vacuum black hole, within the perturbation framework. Our strategy for the stability problem is also applicable to the other higher-dimensional maximally symmetric black holes with non-vanishing cosmological constant. We show that all possible types of maximally symmetric black holes (thus, including the higher-dimensional Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter black holes) are stable against the tensor and the vector perturbations.Comment: 19 pages, 9 figures, references and comments on the generalised black hole case are added, minor changes in text, version to appear in PT

    Second-order Gauge Invariant Cosmological Perturbation Theory: -- Einstein equations in terms of gauge invariant variables --

    Get PDF
    Along the general framework of the gauge invariant perturbation theory developed in the papers [K. Nakamura, Prog. Theor. Phys. {\bf 110} (2003), 723; {\it ibid}, {\bf 113} (2005), 481.], we formulate the second order gauge invariant cosmological perturbation theory in a four dimensional homogeneous isotropic universe. We consider the perturbations both in the universe dominated by the single perfect fluid and in that dominated by the single scalar field. We derive the all components of the Einstein equations in the case where the first order vector and tensor modes are negligible. All equations are derived in terms of gauge invariant variables without any gauge fixing. These equations imply that the second order vector and tensor modes may be generated due to the mode-mode coupling of the linear order scalar perturbations. We also briefly discuss the main progress of this work by the comparison with some literatures.Comment: 58 pages, no figure. Complete version of gr-qc/0605107; some typos are corrected (v2); References and some typos are corrected. To be appeard Progress of Theoretical Physic

    De Sitter ground state of scalar-tensor gravity and its primordial perturbation

    Full text link
    Scalar-tensor gravity is one of the most competitive gravity theory to Einstein's relativity. We reconstruct the exact de Sitter solution in scalar-tensor gravity, in which the non-minimal coupling scalar is rolling along the potential. This solution may have some relation to the early inflation and present acceleration of the universe. We investigated its primordial quantum perturbation around the adiabatic vacuum. We put forward for the first time that exact de Sitter generates non-exactly scale invariant perturbations. In the conformal coupling case, this model predicts that the tensor mode of the perturbation (gravity wave) is strongly depressed.Comment: 9 page

    Slow-roll inflationary senario in the maximally extended background

    Full text link
    During the inflationary epoch,geometry of the universe may be described by quasi-de Sitter space. On the other hand,maximally extended de Sitter metric in the comoving coordinates accords with a special FLRW model with positive spatial curvature,so in this article we focus on the positively curved inflationary paradigm.For this purpose,first we derive the power spectra of comoving curvature perturbation and primordial gravitational waves in a positively curved FLRW universe according to the slowly rolling inflationary senario. It can be shown that the curvature spectral index in this model automatically has a small negative running parameter which is compatible with observational measurements.Then,by taking into account the curvature factor,we investigate the relative amplitude of the scalar and tensor perturbations.It would be clarified that the tensor-scalar ratio for this model against the spatially flat one,depends on the waelength of the perturbative models directly.Comment: 21 pages,n o figure
    • …
    corecore