5,190 research outputs found

    The equivalence of information-theoretic and likelihood-based methods for neural dimensionality reduction

    Get PDF
    Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron's probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as "single-spike information" to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex

    Unsupervised Learning via Total Correlation Explanation

    Full text link
    Learning by children and animals occurs effortlessly and largely without obvious supervision. Successes in automating supervised learning have not translated to the more ambiguous realm of unsupervised learning where goals and labels are not provided. Barlow (1961) suggested that the signal that brains leverage for unsupervised learning is dependence, or redundancy, in the sensory environment. Dependence can be characterized using the information-theoretic multivariate mutual information measure called total correlation. The principle of Total Cor-relation Ex-planation (CorEx) is to learn representations of data that "explain" as much dependence in the data as possible. We review some manifestations of this principle along with successes in unsupervised learning problems across diverse domains including human behavior, biology, and language.Comment: Invited contribution for IJCAI 2017 Early Career Spotlight. 5 pages, 1 figur

    Visual Representations: Defining Properties and Deep Approximations

    Full text link
    Visual representations are defined in terms of minimal sufficient statistics of visual data, for a class of tasks, that are also invariant to nuisance variability. Minimal sufficiency guarantees that we can store a representation in lieu of raw data with smallest complexity and no performance loss on the task at hand. Invariance guarantees that the statistic is constant with respect to uninformative transformations of the data. We derive analytical expressions for such representations and show they are related to feature descriptors commonly used in computer vision, as well as to convolutional neural networks. This link highlights the assumptions and approximations tacitly assumed by these methods and explains empirical practices such as clamping, pooling and joint normalization.Comment: UCLA CSD TR140023, Nov. 12, 2014, revised April 13, 2015, November 13, 2015, February 28, 201

    Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping

    Full text link
    The lack of reliable data in developing countries is a major obstacle to sustainable development, food security, and disaster relief. Poverty data, for example, is typically scarce, sparse in coverage, and labor-intensive to obtain. Remote sensing data such as high-resolution satellite imagery, on the other hand, is becoming increasingly available and inexpensive. Unfortunately, such data is highly unstructured and currently no techniques exist to automatically extract useful insights to inform policy decisions and help direct humanitarian efforts. We propose a novel machine learning approach to extract large-scale socioeconomic indicators from high-resolution satellite imagery. The main challenge is that training data is very scarce, making it difficult to apply modern techniques such as Convolutional Neural Networks (CNN). We therefore propose a transfer learning approach where nighttime light intensities are used as a data-rich proxy. We train a fully convolutional CNN model to predict nighttime lights from daytime imagery, simultaneously learning features that are useful for poverty prediction. The model learns filters identifying different terrains and man-made structures, including roads, buildings, and farmlands, without any supervision beyond nighttime lights. We demonstrate that these learned features are highly informative for poverty mapping, even approaching the predictive performance of survey data collected in the field.Comment: In Proc. 30th AAAI Conference on Artificial Intelligenc
    • …
    corecore