178 research outputs found

    Maximal Pivots on Graphs with an Application to Gene Assembly

    Get PDF
    We consider principal pivot transform (pivot) on graphs. We define a natural variant of this operation, called dual pivot, and show that both the kernel and the set of maximally applicable pivots of a graph are invariant under this operation. The result is motivated by and applicable to the theory of gene assembly in ciliates.Comment: modest revision (including different latex style) w.r.t. v2, 16 pages, 5 figure

    The Group Structure of Pivot and Loop Complementation on Graphs and Set Systems

    Get PDF
    We study the interplay between principal pivot transform (pivot) and loop complementation for graphs. This is done by generalizing loop complementation (in addition to pivot) to set systems. We show that the operations together, when restricted to single vertices, form the permutation group S_3. This leads, e.g., to a normal form for sequences of pivots and loop complementation on graphs. The results have consequences for the operations of local complementation and edge complementation on simple graphs: an alternative proof of a classic result involving local and edge complementation is obtained, and the effect of sequences of local complementations on simple graphs is characterized.Comment: 21 pages, 7 figures, significant additions w.r.t. v3 are Thm 7 and Remark 2

    Nullity and Loop Complementation for Delta-Matroids

    Full text link
    We show that the symmetric difference distance measure for set systems, and more specifically for delta-matroids, corresponds to the notion of nullity for symmetric and skew-symmetric matrices. In particular, as graphs (i.e., symmetric matrices over GF(2)) may be seen as a special class of delta-matroids, this distance measure generalizes the notion of nullity in this case. We characterize delta-matroids in terms of equicardinality of minimal sets with respect to inclusion (in addition we obtain similar characterizations for matroids). In this way, we find that, e.g., the delta-matroids obtained after loop complementation and after pivot on a single element together with the original delta-matroid fulfill the property that two of them have equal "null space" while the third has a larger dimension.Comment: Changes w.r.t. v4: different style, Section 8 is extended, and in addition a few small changes are made in the rest of the paper. 15 pages, no figure

    09061 Abstracts Collection -- Combinatorial Scientific Computing

    Get PDF
    From 01.02.2009 to 06.02.2009, the Dagstuhl Seminar 09061 ``Combinatorial Scientific Computing \u27\u27 was held in Schloss Dagstuhl -- Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Dense graph pattern mining and visualization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Four-bar linkage synthesis using non-convex optimization

    Get PDF
    Ce mémoire présente une méthode pour synthétiser automatiquement des mécanismes articulés à quatre barres. Un logiciel implémentant cette méthode a été développé dans le cadre d’une initiative d’Autodesk Research portant sur la conception générative. Le logiciel prend une trajectoire en entrée et calcule les paramètres d’un mécanisme articulé à quatre barres capable de reproduire la même trajectoire. Ce problème de génération de trajectoire est résolu par optimisation non-convexe. Le problème est modélisé avec des contraintes quadratiques et des variables réelles. Une contrainte redondante spéciale améliore grandement la performance de la méthode. L’expérimentation présentée montre que le logiciel est plus rapide et précis que les approches existantes.This thesis presents a method to automatically synthesize four-bar linkages. A software implementing the method was developed in the scope of a generative design initiative at Autodesk. The software takes a path as input and computes the parameters of a four-bar linkage able to replicate the same path. This path generation problem is solved using non-convex optimization. The problem is modeled with quadratic constraints and real variables. A special redundant constraint greatly improves the performance of the method. Experiments show that the software is faster and more precise than existing approaches

    On the linear algebra of local complementation

    Get PDF
    AbstractWe explore the connections between the linear algebra of symmetric matrices over GF(2) and the circuit theory of 4-regular graphs. In particular, we show that the equivalence relation on simple graphs generated by local complementation can also be generated by an operation defined using inverse matrices

    Faktorizacija matrik nizkega ranga pri učenju z večjedrnimi metodami

    Full text link
    The increased rate of data collection, storage, and availability results in a corresponding interest for data analyses and predictive models based on simultaneous inclusion of multiple data sources. This tendency is ubiquitous in practical applications of machine learning, including recommender systems, social network analysis, finance and computational biology. The heterogeneity and size of the typical datasets calls for simultaneous dimensionality reduction and inference from multiple data sources in a single model. Matrix factorization and multiple kernel learning models are two general approaches that satisfy this goal. This work focuses on two specific goals, namely i) finding interpretable, non-overlapping (orthogonal) data representations through matrix factorization and ii) regression with multiple kernels through the low-rank approximation of the corresponding kernel matrices, providing non-linear outputs and interpretation of kernel selection. The motivation for the models and algorithms designed in this work stems from RNA biology and the rich complexity of protein-RNA interactions. Although the regulation of RNA fate happens at many levels - bringing in various possible data views - we show how different questions can be answered directly through constraints in the model design. We have developed an integrative orthogonality nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites and report on a number of inferred protein-specific patterns, consistent with experimentally determined properties. A principled way to extend the linear models to non-linear settings are kernel methods. Multiple kernel learning enables modelling with different data views, but are limited by the quadratic computation and storage complexity of the kernel matrix. Considerable savings in time and memory can be expected if kernel approximation and multiple kernel learning are performed simultaneously. We present the Mklaren algorithm, which achieves this goal via Incomplete Cholesky Decomposition, where the selection of basis functions is based on Least-angle regression, resulting in linear complexity both in the number of data points and kernels. Considerable savings in approximation rank are observed when compared to general kernel matrix decompositions and comparable to methods specialized to particular kernel function families. The principal advantages of Mklaren are independence of kernel function form, robust inducing point selection and the ability to use different kernels in different regions of both continuous and discrete input spaces, such as numeric vector spaces, strings or trees, providing a platform for bioinformatics. In summary, we design novel models and algorithms based on matrix factorization and kernel learning, combining regression, insights into the domain of interest by identifying relevant patterns, kernels and inducing points, while scaling to millions of data points and data views.V času pospešenega zbiranja, organiziranja in dostopnosti podatkov se pojavlja potreba po razvoju napovednih modelov na osnovi hkratnega učenja iz več podatkovnih virov. Konkretni primeri uporabe obsegajo področja strojnega učenja, priporočilnih sistemov, socialnih omrežij, financ in računske biologije. Heterogenost in velikost tipičnih podatkovnih zbirk vodi razvoj postopkov za hkratno zmanjšanje velikosti (zgoščevanje) in sklepanje iz več virov podatkov v skupnem modelu. Matrična faktorizacija in jedrne metode (ang. kernel methods) sta dve splošni orodji, ki omogočata dosego navedenega cilja. Pričujoče delo se osredotoča na naslednja specifična cilja: i) iskanje interpretabilnih, neprekrivajočih predstavitev vzorcev v podatkih s pomočjo ortogonalne matrične faktorizacije in ii) nadzorovano hkratno faktorizacijo več jedrnih matrik, ki omogoča modeliranje nelinearnih odzivov in interpretacijo pomembnosti različnih podatkovnih virov. Motivacija za razvoj modelov in algoritmov v pričujočem delu izhaja iz RNA biologije in bogate kompleksnosti interakcij med proteini in RNA molekulami v celici. Čeprav se regulacija RNA dogaja na več različnih nivojih - kar vodi v več podatkovnih virov/pogledov - lahko veliko lastnosti regulacije odkrijemo s pomočjo omejitev v fazi modeliranja. V delu predstavimo postopek hkratne matrične faktorizacije z omejitvijo, da se posamezni vzorci v podatkih ne prekrivajo med seboj - so neodvisni oz. ortogonalni. V praksi to pomeni, da lahko odkrijemo različne, neprekrivajoče načine regulacije RNA s strani različnih proteinov. Z vzključitvijo več podatkovnih virov izboljšamo napovedno točnost pri napovedovanju potencialnih vezavnih mest posameznega RNA-vezavnega proteina. Vzorci, odkriti iz podatkov so primerljivi z eksperimentalno določenimi lastnostmi proteinov in obsegajo kratka zaporedja nukleotidov na RNA, kooperativno vezavo z drugimi proteini, RNA strukturnimi lastnostmi ter funkcijsko anotacijo. Klasične metode matrične faktorizacije tipično temeljijo na linearnih modelih podatkov. Jedrne metode so eden od načinov za razširitev modelov matrične faktorizacije za modeliranje nelinearnih odzivov. Učenje z več jedri (ang. Multiple kernel learning) omogoča učenje iz več podatkovnih virov, a je omejeno s kvadratno računsko zahtevnostjo v odvisnosti od števila primerov v podatkih. To omejitev odpravimo z ustreznimi približki pri izračunu jedrnih matrik (ang. kernel matrix). V ta namen izboljšamo obstoječe metode na način, da hkrati izračunamo aproksimacijo jedrnih matrik ter njihovo linearno kombinacijo, ki modelira podan tarčni odziv. To dosežemo z metodo Mklaren (ang. Multiple kernel learning based on Least-angle regression), ki je sestavljena iz Nepopolnega razcepa Choleskega in Regresije najmanjših kotov (ang. Least-angle regression). Načrt algoritma vodi v linearno časovno in prostorsko odvisnost tako glede na število primerov v podatkih kot tudi glede na število jedrnih funkcij. Osnovne prednosti postopka so poleg računske odvisnosti tudi splošnost oz. neodvisnost od uporabljenih jedrnih funkcij. Tako lahko uporabimo različne, splošne jedrne funkcije za modeliranje različnih delov prostora vhodnih podatkov, ki so lahko zvezni ali diskretni, npr. vektorski prostori, prostori nizov znakov in drugih podatkovnih struktur, kar je prikladno za uporabo v bioinformatiki. V delu tako razvijemo algoritme na osnovi hkratne matrične faktorizacije in jedrnih metod, obravnavnamo modele linearne in nelinearne regresije ter interpretacije podatkovne domene - odkrijemo pomembna jedra in primere podatkov, pri čemer je metode mogoče poganjati na milijonih podatkovnih primerov in virov

    Well-Quasi-Ordering of Matrices under Schur Complement and Applications to Directed Graphs

    Get PDF
    In [Rank-Width and Well-Quasi-Ordering of Skew-Symmetric or Symmetric Matrices, arXiv:1007.3807v1] Oum proved that, for a fixed finite field F\mathbf{F}, any infinite sequence M1,M2,...M_1,M_2,... of (skew) symmetric matrices over F\mathbf{F} of bounded F\mathbf{F}-rank-width has a pair i<ji< j, such that MiM_i is isomorphic to a principal submatrix of a principal pivot transform of MjM_j. We generalise this result to σ\sigma-symmetric matrices introduced by Rao and myself in [The Rank-Width of Edge-Coloured Graphs, arXiv:0709.1433v4]. (Skew) symmetric matrices are special cases of σ\sigma-symmetric matrices. As a by-product, we obtain that for every infinite sequence G1,G2,...G_1,G_2,... of directed graphs of bounded rank-width there exist a pair i<ji<j such that GiG_i is a pivot-minor of GjG_j. Another consequence is that non-singular principal submatrices of a σ\sigma-symmetric matrix form a delta-matroid. We extend in this way the notion of representability of delta-matroids by Bouchet.Comment: 35 pages. Revised version with a section for directed graph
    corecore