9,108 research outputs found

    Ising models on locally tree-like graphs

    Full text link
    We consider ferromagnetic Ising models on graphs that converge locally to trees. Examples include random regular graphs with bounded degree and uniformly random graphs with bounded average degree. We prove that the "cavity" prediction for the limiting free energy per spin is correct for any positive temperature and external field. Further, local marginals can be approximated by iterating a set of mean field (cavity) equations. Both results are achieved by proving the local convergence of the Boltzmann distribution on the original graph to the Boltzmann distribution on the appropriate infinite random tree.Comment: Published in at http://dx.doi.org/10.1214/09-AAP627 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On rigidity, orientability and cores of random graphs with sliders

    Get PDF
    Suppose that you add rigid bars between points in the plane, and suppose that a constant fraction qq of the points moves freely in the whole plane; the remaining fraction is constrained to move on fixed lines called sliders. When does a giant rigid cluster emerge? Under a genericity condition, the answer only depends on the graph formed by the points (vertices) and the bars (edges). We find for the random graph G∈G(n,c/n)G \in \mathcal{G}(n,c/n) the threshold value of cc for the appearance of a linear-sized rigid component as a function of qq, generalizing results of Kasiviswanathan et al. We show that this appearance of a giant component undergoes a continuous transition for q≤1/2q \leq 1/2 and a discontinuous transition for q>1/2q > 1/2. In our proofs, we introduce a generalized notion of orientability interpolating between 1- and 2-orientability, of cores interpolating between 2-core and 3-core, and of extended cores interpolating between 2+1-core and 3+2-core; we find the precise expressions for the respective thresholds and the sizes of the different cores above the threshold. In particular, this proves a conjecture of Kasiviswanathan et al. about the size of the 3+2-core. We also derive some structural properties of rigidity with sliders (matroid and decomposition into components) which can be of independent interest.Comment: 32 pages, 1 figur

    On Strong Diameter Padded Decompositions

    Get PDF
    Given a weighted graph G=(V,E,w), a partition of V is Delta-bounded if the diameter of each cluster is bounded by Delta. A distribution over Delta-bounded partitions is a beta-padded decomposition if every ball of radius gamma Delta is contained in a single cluster with probability at least e^{-beta * gamma}. The weak diameter of a cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee. Formerly, it was proven that K_r free graphs admit weak decompositions with padding parameter O(r), while for strong decompositions only O(r^2) padding parameter was known. Furthermore, for the case of a graph G, for which the induced shortest path metric d_G has doubling dimension ddim, a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the case of strong diameter, nothing was known. We construct strong O(r)-padded decompositions for K_r free graphs, matching the state of the art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct (O(ddim),O~(ddim))-sparse cover scheme for such graphs. Our new decompositions and cover have implications to approximating unique games, the construction of light and sparse spanners, and for path reporting distance oracles

    Core percolation in random graphs: a critical phenomena analysis

    Full text link
    We study both numerically and analytically what happens to a random graph of average connectivity "alpha" when its leaves and their neighbors are removed iteratively up to the point when no leaf remains. The remnant is made of isolated vertices plus an induced subgraph we call the "core". In the thermodynamic limit of an infinite random graph, we compute analytically the dynamics of leaf removal, the number of isolated vertices and the number of vertices and edges in the core. We show that a second order phase transition occurs at "alpha = e = 2.718...": below the transition, the core is small but above the transition, it occupies a finite fraction of the initial graph. The finite size scaling properties are then studied numerically in detail in the critical region, and we propose a consistent set of critical exponents, which does not coincide with the set of standard percolation exponents for this model. We clarify several aspects in combinatorial optimization and spectral properties of the adjacency matrix of random graphs. Key words: random graphs, leaf removal, core percolation, critical exponents, combinatorial optimization, finite size scaling, Monte-Carlo.Comment: 15 pages, 9 figures (color eps) [v2: published text with a new Title and addition of an appendix, a ref. and a fig.
    • …
    corecore