1,098 research outputs found

    Reconstructing Generalized Staircase Polygons with Uniform Step Length

    Full text link
    Visibility graph reconstruction, which asks us to construct a polygon that has a given visibility graph, is a fundamental problem with unknown complexity (although visibility graph recognition is known to be in PSPACE). We show that two classes of uniform step length polygons can be reconstructed efficiently by finding and removing rectangles formed between consecutive convex boundary vertices called tabs. In particular, we give an O(n2m)O(n^2m)-time reconstruction algorithm for orthogonally convex polygons, where nn and mm are the number of vertices and edges in the visibility graph, respectively. We further show that reconstructing a monotone chain of staircases (a histogram) is fixed-parameter tractable, when parameterized on the number of tabs, and polynomially solvable in time O(n2m)O(n^2m) under reasonable alignment restrictions.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

    Full text link
    We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of max-degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore