577 research outputs found

    Interactive Coding Resilient to an Unknown Number of Erasures

    Get PDF
    We consider distributed computations between two parties carried out over a noisy channel that may erase messages. Following a noise model proposed by Dani et al. (2018), the noise level observed by the parties during the computation in our setting is arbitrary and a priori unknown to the parties. We develop interactive coding schemes that adapt to the actual level of noise and correctly execute any two-party computation. Namely, in case the channel erases T transmissions, the coding scheme will take N+2T transmissions using an alphabet of size 4 (alternatively, using 2N+4T transmissions over a binary channel) to correctly simulate any binary protocol that takes N transmissions assuming a noiseless channel. We can further reduce the communication to N+T by relaxing the communication model and allowing parties to remain silent rather than forcing them to communicate in every round of the coding scheme. Our coding schemes are efficient, deterministic, have linear overhead both in their communication and round complexity, and succeed (with probability 1) regardless of the number of erasures T

    Adaptive Protocols for Interactive Communication

    Full text link
    How much adversarial noise can protocols for interactive communication tolerate? This question was examined by Braverman and Rao (IEEE Trans. Inf. Theory, 2014) for the case of "robust" protocols, where each party sends messages only in fixed and predetermined rounds. We consider a new class of non-robust protocols for Interactive Communication, which we call adaptive protocols. Such protocols adapt structurally to the noise induced by the channel in the sense that both the order of speaking, and the length of the protocol may vary depending on observed noise. We define models that capture adaptive protocols and study upper and lower bounds on the permissible noise rate in these models. When the length of the protocol may adaptively change according to the noise, we demonstrate a protocol that tolerates noise rates up to 1/31/3. When the order of speaking may adaptively change as well, we demonstrate a protocol that tolerates noise rates up to 2/32/3. Hence, adaptivity circumvents an impossibility result of 1/41/4 on the fraction of tolerable noise (Braverman and Rao, 2014).Comment: Content is similar to previous version yet with an improved presentatio

    Interactive Channel Capacity Revisited

    Full text link
    We provide the first capacity approaching coding schemes that robustly simulate any interactive protocol over an adversarial channel that corrupts any ϵ\epsilon fraction of the transmitted symbols. Our coding schemes achieve a communication rate of 1O(ϵloglog1/ϵ)1 - O(\sqrt{\epsilon \log \log 1/\epsilon}) over any adversarial channel. This can be improved to 1O(ϵ)1 - O(\sqrt{\epsilon}) for random, oblivious, and computationally bounded channels, or if parties have shared randomness unknown to the channel. Surprisingly, these rates exceed the 1Ω(H(ϵ))=1Ω(ϵlog1/ϵ)1 - \Omega(\sqrt{H(\epsilon)}) = 1 - \Omega(\sqrt{\epsilon \log 1/\epsilon}) interactive channel capacity bound which [Kol and Raz; STOC'13] recently proved for random errors. We conjecture 1Θ(ϵloglog1/ϵ)1 - \Theta(\sqrt{\epsilon \log \log 1/\epsilon}) and 1Θ(ϵ)1 - \Theta(\sqrt{\epsilon}) to be the optimal rates for their respective settings and therefore to capture the interactive channel capacity for random and adversarial errors. In addition to being very communication efficient, our randomized coding schemes have multiple other advantages. They are computationally efficient, extremely natural, and significantly simpler than prior (non-capacity approaching) schemes. In particular, our protocols do not employ any coding but allow the original protocol to be performed as-is, interspersed only by short exchanges of hash values. When hash values do not match, the parties backtrack. Our approach is, as we feel, by far the simplest and most natural explanation for why and how robust interactive communication in a noisy environment is possible

    Interactive Error Correcting Codes: New Constructions and Impossibility Bounds

    Get PDF

    Communication with Partial Noiseless Feedback

    Get PDF
    We introduce the notion of one-way communication schemes with partial noiseless feedback. In this setting, Alice wishes to communicate a message to Bob by using a communication scheme that involves sending a sequence of bits over a channel while receiving feedback bits from Bob for delta fraction of the transmissions. An adversary is allowed to corrupt up to a constant fraction of Alice\u27s transmissions, while the feedback is always uncorrupted. Motivated by questions related to coding for interactive communication, we seek to determine the maximum error rate, as a function of 0 <= delta <= 1, such that Alice can send a message to Bob via some protocol with delta fraction of noiseless feedback. The case delta = 1 corresponds to full feedback, in which the result of Berlekamp [\u2764] implies that the maximum tolerable error rate is 1/3, while the case delta = 0 corresponds to no feedback, in which the maximum tolerable error rate is 1/4, achievable by use of a binary error-correcting code. In this work, we show that for any delta in (0,1] and gamma in [0, 1/3), there exists a randomized communication scheme with noiseless delta-feedback, such that the probability of miscommunication is low, as long as no more than a gamma fraction of the rounds are corrupted. Moreover, we show that for any delta in (0, 1] and gamma < f(delta), there exists a deterministic communication scheme with noiseless delta-feedback that always decodes correctly as long as no more than a gamma fraction of rounds are corrupted. Here f is a monotonically increasing, piecewise linear, continuous function with f(0) = 1/4 and f(1) = 1/3. Also, the rate of communication in both cases is constant (dependent on delta and gamma but independent of the input length)

    Tiny Codes for Guaranteeable Delay

    Full text link
    Future 5G systems will need to support ultra-reliable low-latency communications scenarios. From a latency-reliability viewpoint, it is inefficient to rely on average utility-based system design. Therefore, we introduce the notion of guaranteeable delay which is the average delay plus three standard deviations of the mean. We investigate the trade-off between guaranteeable delay and throughput for point-to-point wireless erasure links with unreliable and delayed feedback, by bringing together signal flow techniques to the area of coding. We use tiny codes, i.e. sliding window by coding with just 2 packets, and design three variations of selective-repeat ARQ protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii) Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting the performance of these protocols with uncoded ARQ, we demonstrate that HARQ performs only slightly better, cumulative feedback-based ARQ does not provide significant throughput while it has better average delay, and Coded ARQ can provide gains up to about 40% in terms of throughput. Coded ARQ also provides delay guarantees, and is robust to various challenges such as imperfect and delayed feedback, burst erasures, and round-trip time fluctuations. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network

    Coding for interactive communication correcting insertions and deletions

    Get PDF
    We consider the question of interactive communication, in which two remote parties perform a computation while their communication channel is (adversarially) noisy. We extend here the discussion into a more general and stronger class of noise, namely, we allow the channel to perform insertions and deletions of symbols. These types of errors may bring the parties "out of sync", so that there is no consensus regarding the current round of the protocol. In this more general noise model, we obtain the first interactive coding scheme that has a constant rate and resists noise rates of up to 1/18ε1/18-\varepsilon. To this end we develop a novel primitive we name edit distance tree code. The edit distance tree code is designed to replace the Hamming distance constraints in Schulman's tree codes (STOC 93), with a stronger edit distance requirement. However, the straightforward generalization of tree codes to edit distance does not seem to yield a primitive that suffices for communication in the presence of synchronization problems. Giving the "right" definition of edit distance tree codes is a main conceptual contribution of this work
    corecore