1,766 research outputs found

    High waves in Draupner seas β€” Part 1:numerical simulations and characterization of the seas

    Get PDF
    Extreme waves are studied in numerical simulations of the so-called Draupner seas that resemble the wave situation near the observation area of the Draupner wave, an iconic example of a freak, rogue wave. Recent new meteorological insights describe these seas as a substantial wind-generated wave system accompanied by two low-frequency lobes. With the significant wave height Hs= 12 m above a depth of 70 m and the wide directional spreading over 120∘ as design information, results are presented of simulations of phase resolved waves. Quantitative data are derived from 8000 waves over an area of 15 km2. Very high waves with crest heights exceeding 1.5 Hs occur in average in 20 min timespan over an area of 0.8 km2. Details will be given for an isolated freak wave and a sequence of 3 freak crest heights in a group of 2 high waves. In Part 2, van Groesen and Wijaya (J Ocean Eng Mar Energy, 2017), it will be shown that 60 s before their appearance freak waves can be predicted from radar images on board of a ship that scans the surrounding area over a distance of 2 km

    Incremental Training of a Detector Using Online Sparse Eigen-decomposition

    Full text link
    The ability to efficiently and accurately detect objects plays a very crucial role for many computer vision tasks. Recently, offline object detectors have shown a tremendous success. However, one major drawback of offline techniques is that a complete set of training data has to be collected beforehand. In addition, once learned, an offline detector can not make use of newly arriving data. To alleviate these drawbacks, online learning has been adopted with the following objectives: (1) the technique should be computationally and storage efficient; (2) the updated classifier must maintain its high classification accuracy. In this paper, we propose an effective and efficient framework for learning an adaptive online greedy sparse linear discriminant analysis (GSLDA) model. Unlike many existing online boosting detectors, which usually apply exponential or logistic loss, our online algorithm makes use of LDA's learning criterion that not only aims to maximize the class-separation criterion but also incorporates the asymmetrical property of training data distributions. We provide a better alternative for online boosting algorithms in the context of training a visual object detector. We demonstrate the robustness and efficiency of our methods on handwriting digit and face data sets. Our results confirm that object detection tasks benefit significantly when trained in an online manner.Comment: 14 page
    • …
    corecore