6,665 research outputs found

    Cost-Effective Cache Deployment in Mobile Heterogeneous Networks

    Full text link
    This paper investigates one of the fundamental issues in cache-enabled heterogeneous networks (HetNets): how many cache instances should be deployed at different base stations, in order to provide guaranteed service in a cost-effective manner. Specifically, we consider two-tier HetNets with hierarchical caching, where the most popular files are cached at small cell base stations (SBSs) while the less popular ones are cached at macro base stations (MBSs). For a given network cache deployment budget, the cache sizes for MBSs and SBSs are optimized to maximize network capacity while satisfying the file transmission rate requirements. As cache sizes of MBSs and SBSs affect the traffic load distribution, inter-tier traffic steering is also employed for load balancing. Based on stochastic geometry analysis, the optimal cache sizes for MBSs and SBSs are obtained, which are threshold-based with respect to cache budget in the networks constrained by SBS backhauls. Simulation results are provided to evaluate the proposed schemes and demonstrate the applications in cost-effective network deployment

    Performance analysis of a Master/Slave switched Ethernet for military embedded applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the next generation military embedded applications. A new communication network based upon Full Duplex Switched Ethernet is proposed in this paper to overcome these limitations. To allow existing military subsystems to be easily supported by a Switched Ethernet network, our proposal consists in keeping their current centralized communication scheme by using an optimized master/slave transmission control on Switched Ethernet thanks to the Flexible Time Triggered (FTT) paradigm. Our main objective is to assess the performance of such a proposal and estimate the quality of service we can expect in terms of latency. Using the Network Calculus formalism, schedulability analysis are determined. These analysis are illustrated in the case of a realistic military embedded application extracted from a real military aircraft network, to highlight the proposal's ability to support the required time constrained communications

    Full duplex switched ethernet for next generation "1553B" -based applications

    Get PDF
    Over the last thirty years, the MIL-STD 1553B data bus has been used in many embedded systems, like aircrafts, ships, missiles and satellites. However, the increasing number and complexity of interconnected subsystems lead to emerging needs for more communication bandwidth. Therefore, a new interconnection system is needed to overcome the limitations of the MIL-STD 1553B data bus. Among several high speed networks, Full Duplex Switched Ethernet is put forward here as an attractive candidate to replace the MIL-STD 1553B data bus. However, the key argument against Switched Ethernet lies in its non-deterministic behavior that makes it inadequate to deliver hard timeconstrained communications. Hence, our primary objective in this paper is to achieve an accepted QoS level offered by Switched Ethernet, to support diverse "1553B"-based applications requirements. We evaluate the performance of traffic shaping techniques on Full Duplex Switched Ethernet with an adequate choice of service strategy in the switch, to guarantee the real-time constraints required by these specific 1553B-based applications. An analytic study is conducted, using the Network Calculus formalism, to evaluate the deterministic guarantees offered by our approach. Theoretical analysis are then investigated in the case of a realistic "1553B"-based application extracted from a real military aircraft network. The results herein show the ability of profiled Full Duplex Switched Ethernet to satisfy 1553B-like real-time constraints

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    Centralized vs distributed communication scheme on switched ethernet for embedded military applications

    Get PDF
    Current military communication network is a generation old and is no longer effective in meeting the emerging requirements imposed by the future embedded military applications. Therefore, a new interconnection system is needed to overcome these limitations. Two new communication networks based upon Full Duplex Switched Ethernet are presented herein in this aim. The first one uses a distributed communication scheme where equipments can emit their data simultaneously, which clearly improves system’s throughput and flexibility. However, migrating all existing applications into a compliant form could be an expensive step. To avoid this process, the second proposal consists in keeping the current centralized communication scheme. Our objective is to assess and compare the real time guarantees that each proposal can offer. The paper includes the functional description of each proposed communication network and a military avionic application to highlight proposals ability to support the required time constrained communications
    corecore