101 research outputs found

    Motion Segmentation of Truncated Signed Distance Function based Volumetric Surfaces

    No full text
    © 2015 IEEE.Truncated signed distance function (TSDF) based volumetric surface reconstructions of static environments can be readily acquired using recent RGB-D camera based mapping systems. If objects in the environment move then a previously obtained TSDF reconstruction is no longer current. Handling this problem requires segmenting moving objects from the reconstruction. To this end, we present a novel solution to the motion segmentation of TSDF volumes. The segmentation problem is cast as CRF-based MAP inference in the voxel space. We propose: a novel data term by solving sparse multi-body motion segmentation and computing likelihoods for each motion label in the RGB-D image space, and, a novel pair wise term based on gradients of the TSDF volume. Experimental evaluation shows that the proposed approach achieves successful segmentations on reconstructions acquired with Kinect Fusion. Unlike the existing solutions which only work if the objects move completely from their initially occupied spaces, the proposed method permits segmentation of objects when they start to move

    Efficient Dense Registration, Segmentation, and Modeling Methods for RGB-D Environment Perception

    Get PDF
    One perspective for artificial intelligence research is to build machines that perform tasks autonomously in our complex everyday environments. This setting poses challenges to the development of perception skills: A robot should be able to perceive its location and objects in its surrounding, while the objects and the robot itself could also be moving. Objects may not only be composed of rigid parts, but could be non-rigidly deformable or appear in a variety of similar shapes. Furthermore, it could be relevant to the task to observe object semantics. For a robot acting fluently and immediately, these perception challenges demand efficient methods. This theses presents novel approaches to robot perception with RGB-D sensors. It develops efficient registration, segmentation, and modeling methods for scene and object perception. We propose multi-resolution surfel maps as a concise representation for RGB-D measurements. We develop probabilistic registration methods that handle rigid scenes, scenes with multiple rigid parts that move differently, and scenes that undergo non-rigid deformations. We use these methods to learn and perceive 3D models of scenes and objects in both static and dynamic environments. For learning models of static scenes, we propose a real-time capable simultaneous localization and mapping approach. It aligns key views in RGB-D video using our rigid registration method and optimizes the pose graph of the key views. The acquired models are then perceived in live images through detection and tracking within a Bayesian filtering framework. An assumption frequently made for environment mapping is that the observed scene remains static during the mapping process. Through rigid multi-body registration, we take advantage of releasing this assumption: Our registration method segments views into parts that move independently between the views and simultaneously estimates their motion. Within simultaneous motion segmentation, localization, and mapping, we separate scenes into objects by their motion. Our approach acquires 3D models of objects and concurrently infers hierarchical part relations between them using probabilistic reasoning. It can be applied for interactive learning of objects and their part decomposition. Endowing robots with manipulation skills for a large variety of objects is a tedious endeavor if the skill is programmed for every instance of an object class. Furthermore, slight deformations of an instance could not be handled by an inflexible program. Deformable registration is useful to perceive such shape variations, e.g., between specific instances of a tool. We develop an efficient deformable registration method and apply it for the transfer of robot manipulation skills between varying object instances. On the object-class level, we segment images using random decision forest classifiers in real-time. The probabilistic labelings of individual images are fused in 3D semantic maps within a Bayesian framework. We combine our object-class segmentation method with simultaneous localization and mapping to achieve online semantic mapping in real-time. The methods developed in this thesis are evaluated in experiments on publicly available benchmark datasets and novel own datasets. We publicly demonstrate several of our perception approaches within integrated robot systems in the mobile manipulation context.Effiziente Dichte Registrierungs-, Segmentierungs- und Modellierungsmethoden für die RGB-D Umgebungswahrnehmung In dieser Arbeit beschäftigen wir uns mit Herausforderungen der visuellen Wahrnehmung für intelligente Roboter in Alltagsumgebungen. Solche Roboter sollen sich selbst in ihrer Umgebung zurechtfinden, und Wissen über den Verbleib von Objekten erwerben können. Die Schwierigkeit dieser Aufgaben erhöht sich in dynamischen Umgebungen, in denen ein Roboter die Bewegung einzelner Teile differenzieren und auch wahrnehmen muss, wie sich diese Teile bewegen. Bewegt sich ein Roboter selbständig in dieser Umgebung, muss er auch seine eigene Bewegung von der Veränderung der Umgebung unterscheiden. Szenen können sich aber nicht nur durch die Bewegung starrer Teile verändern. Auch die Teile selbst können ihre Form in nicht-rigider Weise ändern. Eine weitere Herausforderung stellt die semantische Interpretation von Szenengeometrie und -aussehen dar. Damit intelligente Roboter unmittelbar und flüssig handeln können, sind effiziente Algorithmen für diese Wahrnehmungsprobleme erforderlich. Im ersten Teil dieser Arbeit entwickeln wir effiziente Methoden zur Repräsentation und Registrierung von RGB-D Messungen. Zunächst stellen wir Multi-Resolutions-Oberflächenelement-Karten (engl. multi-resolution surfel maps, MRSMaps) als eine kompakte Repräsentation von RGB-D Messungen vor, die unseren effizienten Registrierungsmethoden zugrunde liegt. Bilder können effizient in dieser Repräsentation aggregiert werde, wobei auch mehrere Bilder aus verschiedenen Blickpunkten integriert werden können, um Modelle von Szenen und Objekte aus vielfältigen Ansichten darzustellen. Für die effiziente, robuste und genaue Registrierung von MRSMaps wird eine Methode vorgestellt, die Rigidheit der betrachteten Szene voraussetzt. Die Registrierung schätzt die Kamerabewegung zwischen den Bildern und gewinnt ihre Effizienz durch die Ausnutzung der kompakten multi-resolutionalen Darstellung der Karten. Die Registrierungsmethode erzielt hohe Bildverarbeitungsraten auf einer CPU. Wir demonstrieren hohe Effizienz, Genauigkeit und Robustheit unserer Methode im Vergleich zum bisherigen Stand der Forschung auf Vergleichsdatensätzen. In einem weiteren Registrierungsansatz lösen wir uns von der Annahme, dass die betrachtete Szene zwischen Bildern statisch ist. Wir erlauben nun, dass sich rigide Teile der Szene bewegen dürfen, und erweitern unser rigides Registrierungsverfahren auf diesen Fall. Unser Ansatz segmentiert das Bild in Bereiche einzelner Teile, die sich unterschiedlich zwischen Bildern bewegen. Wir demonstrieren hohe Segmentierungsgenauigkeit und Genauigkeit in der Bewegungsschätzung unter Echtzeitbedingungen für die Verarbeitung. Schließlich entwickeln wir ein Verfahren für die Wahrnehmung von nicht-rigiden Deformationen zwischen zwei MRSMaps. Auch hier nutzen wir die multi-resolutionale Struktur in den Karten für ein effizientes Registrieren von grob zu fein. Wir schlagen Methoden vor, um aus den geschätzten Deformationen die lokale Bewegung zwischen den Bildern zu berechnen. Wir evaluieren Genauigkeit und Effizienz des Registrierungsverfahrens. Der zweite Teil dieser Arbeit widmet sich der Verwendung unserer Kartenrepräsentation und Registrierungsmethoden für die Wahrnehmung von Szenen und Objekten. Wir verwenden MRSMaps und unsere rigide Registrierungsmethode, um dichte 3D Modelle von Szenen und Objekten zu lernen. Die räumlichen Beziehungen zwischen Schlüsselansichten, die wir durch Registrierung schätzen, werden in einem Simultanen Lokalisierungs- und Kartierungsverfahren (engl. simultaneous localization and mapping, SLAM) gegeneinander abgewogen, um die Blickposen der Schlüsselansichten zu schätzen. Für das Verfolgen der Kamerapose bezüglich der Modelle in Echtzeit, kombinieren wir die Genauigkeit unserer Registrierung mit der Robustheit von Partikelfiltern. Zu Beginn der Posenverfolgung, oder wenn das Objekt aufgrund von Verdeckungen oder extremen Bewegungen nicht weiter verfolgt werden konnte, initialisieren wir das Filter durch Objektdetektion. Anschließend wenden wir unsere erweiterten Registrierungsverfahren für die Wahrnehmung in nicht-rigiden Szenen und für die Übertragung von Objekthandhabungsfähigkeiten von Robotern an. Wir erweitern unseren rigiden Kartierungsansatz auf dynamische Szenen, in denen sich rigide Teile bewegen. Die Bewegungssegmente in Schlüsselansichten werden zueinander in Bezug gesetzt, um Äquivalenz- und Teilebeziehungen von Objekten probabilistisch zu inferieren, denen die Segmente entsprechen. Auch hier liefert unsere Registrierungsmethode die Bewegung der Kamera bezüglich der Objekte, die wir in einem SLAM Verfahren optimieren. Aus diesen Blickposen wiederum können wir die Bewegungssegmente in dichten Objektmodellen vereinen. Objekte einer Klasse teilen oft eine gemeinsame Topologie von funktionalen Elementen, die durch Formkorrespondenzen ermittelt werden kann. Wir verwenden unsere deformierbare Registrierung, um solche Korrespondenzen zu finden und die Handhabung eines Objektes durch einen Roboter auf neue Objektinstanzen derselben Klasse zu übertragen. Schließlich entwickeln wir einen echtzeitfähigen Ansatz, der Kategorien von Objekten in RGB-D Bildern erkennt und segmentiert. Die Segmentierung basiert auf Ensemblen randomisierter Entscheidungsbäume, die Geometrie- und Texturmerkmale zur Klassifikation verwenden. Wir fusionieren Segmentierungen von Einzelbildern einer Szene aus mehreren Ansichten in einer semantischen Objektklassenkarte mit Hilfe unseres SLAM-Verfahrens. Die vorgestellten Methoden werden auf öffentlich verfügbaren Vergleichsdatensätzen und eigenen Datensätzen evaluiert. Einige unserer Ansätze wurden auch in integrierten Robotersystemen für mobile Objekthantierungsaufgaben öffentlich demonstriert. Sie waren ein wichtiger Bestandteil für das Gewinnen der RoboCup-Roboterwettbewerbe in der RoboCup@Home Liga in den Jahren 2011, 2012 und 2013

    Recognizing point clouds using conditional random fields

    Get PDF
    Detecting objects in cluttered scenes is a necessary step for many robotic tasks and facilitates the interaction of the robot with its environment. Because of the availability of efficient 3D sensing devices as the Kinect, methods for the recognition of objects in 3D point clouds have gained importance during the last years. In this paper, we propose a new supervised learning approach for the recognition of objects from 3D point clouds using Conditional Random Fields, a type of discriminative, undirected probabilistic graphical model. The various features and contextual relations of the objects are described by the potential functions in the graph. Our method allows for learning and inference from unorganized point clouds of arbitrary sizes and shows significant benefit in terms of computational speed during prediction when compared to a state-of-the-art approach based on constrained optimization.Peer ReviewedPostprint (author’s final draft

    Change detection in combination with spatial models and its effectiveness on underwater scenarios

    Get PDF
    This thesis proposes a novel change detection approach for underwater scenarios and combines it with different especially developed spatial models, this allows accurate and spatially coherent detection of any moving objects with a static camera in arbitrary environments. To deal with the special problems of underwater imaging pre-segmentations based on the optical flow and other special adaptions were added to the change detection algorithm so that it can better handle typical underwater scenarios like a scene crowded by a whole fish swarm

    Visual Representation Learning with Limited Supervision

    Get PDF
    The quality of a Computer Vision system is proportional to the rigor of data representation it is built upon. Learning expressive representations of images is therefore the centerpiece to almost every computer vision application, including image search, object detection and classification, human re-identification, object tracking, pose understanding, image-to-image translation, and embodied agent navigation to name a few. Deep Neural Networks are most often seen among the modern methods of representation learning. The limitation is, however, that deep representation learning methods require extremely large amounts of manually labeled data for training. Clearly, annotating vast amounts of images for various environments is infeasible due to cost and time constraints. This requirement of obtaining labeled data is a prime restriction regarding pace of the development of visual recognition systems. In order to cope with the exponentially growing amounts of visual data generated daily, machine learning algorithms have to at least strive to scale at a similar rate. The second challenge consists in the learned representations having to generalize to novel objects, classes, environments and tasks in order to accommodate to the diversity of the visual world. Despite the evergrowing number of recent publications tangentially addressing the topic of learning generalizable representations, efficient generalization is yet to be achieved. This dissertation attempts to tackle the problem of learning visual representations that can generalize to novel settings while requiring few labeled examples. In this research, we study the limitations of the existing supervised representation learning approaches and propose a framework that improves the generalization of learned features by exploiting visual similarities between images which are not captured by provided manual annotations. Furthermore, to mitigate the common requirement of large scale manually annotated datasets, we propose several approaches that can learn expressive representations without human-attributed labels, in a self-supervised fashion, by grouping highly-similar samples into surrogate classes based on progressively learned representations. The development of computer vision as science is preconditioned upon the seamless ability of a machine to record and disentangle pictures' attributes that were expected to only be conceived by humans. As such, particular interest was dedicated to the ability to analyze the means of artistic expression and style which depicts a more complex task than merely breaking an image down to colors and pixels. The ultimate test for this ability is the task of style transfer which involves altering the style of an image while keeping its content. An effective solution of style transfer requires learning such image representation which would allow disentangling image style and its content. Moreover, particular artistic styles come with idiosyncrasies that affect which content details should be preserved and which discarded. Another pitfall here is that it is impossible to get pixel-wise annotations of style and how the style should be altered. We address this problem by proposing an unsupervised approach that enables encoding the image content in such a way that is required by a particular style. The proposed approach exchanges the style of an input image by first extracting the content representation in a style-aware way and then rendering it in a new style using a style-specific decoder network, achieving compelling results in image and video stylization. Finally, we combine supervised and self-supervised representation learning techniques for the task of human and animals pose understanding. The proposed method enables transfer of the representation learned for recognition of human poses to proximal mammal species without using labeled animal images. This approach is not limited to dense pose estimation and could potentially enable autonomous agents from robots to self-driving cars to retrain themselves and adapt to novel environments based on learning from previous experiences

    Characterizing Objects in Images using Human Context

    Get PDF
    Humans have an unmatched capability of interpreting detailed information about existent objects by just looking at an image. Particularly, they can effortlessly perform the following tasks: 1) Localizing various objects in the image and 2) Assigning functionalities to the parts of localized objects. This dissertation addresses the problem of aiding vision systems accomplish these two goals. The first part of the dissertation concerns object detection in a Hough-based framework. To this end, the independence assumption between features is addressed by grouping them in a local neighborhood. We study the complementary nature of individual and grouped features and combine them to achieve improved performance. Further, we consider the challenging case of detecting small and medium sized household objects under human-object interactions. We first evaluate appearance based star and tree models. While the tree model is slightly better, appearance based methods continue to suffer due to deficiencies caused by human interactions. To this end, we successfully incorporate automatically extracted human pose as a form of context for object detection. The second part of the dissertation addresses the tedious process of manually annotating objects to train fully supervised detectors. We observe that videos of human-object interactions with activity labels can serve as weakly annotated examples of household objects. Since such objects cannot be localized only through appearance or motion, we propose a framework that includes human centric functionality to retrieve the common object. Designed to maximize data utility by detecting multiple instances of an object per video, the framework achieves performance comparable to its fully supervised counterpart. The final part of the dissertation concerns localizing functional regions or affordances within objects by casting the problem as that of semantic image segmentation. To this end, we introduce a dataset involving human-object interactions with strong i.e. pixel level and weak i.e. clickpoint and image level affordance annotations. We propose a framework that utilizes both forms of weak labels and demonstrate that efforts for weak annotation can be further optimized using human context

    Symmetry Detection in Large Scale City Scans

    No full text
    In this report we present a novel method for detecting partial symmetries in very large point clouds of 3D city scans. Unlike previous work, which was limited to data sets of a few hundred megabytes maximum, our method scales to very large scenes. We map the detection problem to a nearestneighbor search in a low-dimensional feature space, followed by a cascade of tests for geometric clustering of potential matches. Our algorithm robustly handles noisy real-world scanner data, obtaining a recognition performance comparable to state-of-the-art methods. In practice, it scales linearly with the scene size and achieves a high absolute throughput, processing half a terabyte of raw scanner data over night on a dual socket commodity PC
    corecore