6 research outputs found

    Max-plus-linear model-based predictive control for constrained HVLV manufacturing systems

    Get PDF
    International audienceIn this paper, a max-plus-linear model predictive con- trol strategy is proposed for High-Variety, Low-Volume (HVLV) systems. Firstly, using the (max,+) algebra, a di- rect generation of event-timing equations for determinis- tic and decision-free HVLV manufacturing systems is ob- tained. Then, a linear optimization method is presented. It is based on canonical forms for Max-Min-Plus-Scaling (MMPS) functions with linear constraints on the inputs. The approach aims at solving several linear programming problems and its validity is illustrated by a simulation ex- ample. Finally, a discussion of results, conclusions and perspectives are given

    A Mathematical Model for HVLV Systems Scheduling and Optimization With Periodic Preventive Maintenance Using (max, +) Algebra

    Get PDF
    International audienceThe High-Variety, Low-Volume (HVLV) scheduling problem is one of the most arduous combinatorial optimization problems. This paper considers an interesting formulation of the HVLV scheduling problem using (max, +) algebra while periodic Preventive Maintenance (PM) is considered. Maintenance is time based since activities are periodically ïŹxed: maintenance is required after a periodic time interval (all periods are equals on each machine). In this paper, the maintenance tasks of machines are controllable.The jobs and the maintenance operations are scheduled simultaneously. Also, the maintenance operations are scheduled between each other, so that a regular criterion is optimized. To generate feasible schedules, constrained decision variables are incorporated into the (max, +) model. The validity of the proposed approach is illustrated by simulation examples

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    Proceedings of the 18th International Conference on Engineering Design (ICED11):Book of Abstracts

    Get PDF
    The ICED series of conferences is the Design Society's "flagship" event. ICED11 took place on August 15-18, 2011, at the campus of the Danish Technical University in Lyngby/Copenhagen, Denmark. The Proceedings of the conference are published in 10 individual volumes, arranged according to topics. All volumes of the Proceedings may be purchased individually through Amazon and other on-line booksellers. For members of the Design Society, all papers are available on this website. The Programme and Abstract Book is publically available for download

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology
    corecore