3,420 research outputs found

    New heuristics for multi-objective worst-case optimization in evidence-based robust design

    Get PDF
    This paper presents a non-nested algorithm for the solution of multi-objective min-max problems (MOMMP) in worst-case optimization. The algorithm has been devised for evidence-based robust optimization, where the lack of a defined probabilistic behaviour of the uncertain parameters makes it impossible to apply sample-based techniques and forces the designer to identify the worst case over the subdomains of the uncertainty space. In evidence theory, the robustness of the solutions is measured in terms of the Belief in the realization of the value of the design budgets, which acts as a lower bound to the unknown cumulative distribution function of the budget. Thus a means of finding robust solutions in preliminary design consists on applying the minimax model, where the worst-case budget over the uncertainty space is optimized over the control space. The paper proposes a novel heuristic to solve MOMMP and demonstrates its capability to approximate the worst-case Pareto front at a very reduced cost with respect to approaches based on nested optimization

    Solving the G-problems in less than 500 iterations: Improved efficient constrained optimization by surrogate modeling and adaptive parameter control

    Get PDF
    Constrained optimization of high-dimensional numerical problems plays an important role in many scientific and industrial applications. Function evaluations in many industrial applications are severely limited and no analytical information about objective function and constraint functions is available. For such expensive black-box optimization tasks, the constraint optimization algorithm COBRA was proposed, making use of RBF surrogate modeling for both the objective and the constraint functions. COBRA has shown remarkable success in solving reliably complex benchmark problems in less than 500 function evaluations. Unfortunately, COBRA requires careful adjustment of parameters in order to do so. In this work we present a new self-adjusting algorithm SACOBRA, which is based on COBRA and capable to achieve high-quality results with very few function evaluations and no parameter tuning. It is shown with the help of performance profiles on a set of benchmark problems (G-problems, MOPTA08) that SACOBRA consistently outperforms any COBRA algorithm with fixed parameter setting. We analyze the importance of the several new elements in SACOBRA and find that each element of SACOBRA plays a role to boost up the overall optimization performance. We discuss the reasons behind and get in this way a better understanding of high-quality RBF surrogate modeling

    Evolutionary multi-objective worst-case robust optimisation

    Get PDF
    Many real-world problems are subject to uncertainty, and often solutions should not only be good, but also robust against environmental disturbances or deviations from the decision variables. While most papers dealing with robustness aim at finding solutions with a high expected performance given a distribution of the uncertainty, we examine the trade-off between the allowed deviations from the decision variables (tolerance level), and the worst case performance given the allowed deviations. In this research work, we suggest two multi-objective evolutionary algorithms to compute the available trade-offs between allowed tolerance level and worst-case quality of the solutions, and the tolerance level is defined as robustness which could also be the variations from parameters. Both algorithms are 2-level nested algorithms. While the first algorithm is point-based in the sense that the lower level computes a point of worst case for each upper level solution, the second algorithm is envelope-based, in the sense that the lower level computes a whole trade-off curve between worst-case fitness and tolerance level for each upper level solution. Our problem can be considered as a special case of bi-level optimisation, which is computationally expensive, because each upper level solution is evaluated by calling a lower level optimiser. We propose and compare several strategies to improve the efficiency of both algorithms. Later, we also suggest surrogate-assisted algorithms to accelerate both algorithms

    Scalarizing Functions in Bayesian Multiobjective Optimization

    Get PDF
    Scalarizing functions have been widely used to convert a multiobjective optimization problem into a single objective optimization problem. However, their use in solving (computationally) expensive multi- and many-objective optimization problems in Bayesian multiobjective optimization is scarce. Scalarizing functions can play a crucial role on the quality and number of evaluations required when doing the optimization. In this article, we study and review 15 different scalarizing functions in the framework of Bayesian multiobjective optimization and build Gaussian process models (as surrogates, metamodels or emulators) on them. We use expected improvement as infill criterion (or acquisition function) to update the models. In particular, we compare different scalarizing functions and analyze their performance on several benchmark problems with different number of objectives to be optimized. The review and experiments on different functions provide useful insights when using and selecting a scalarizing function when using a Bayesian multiobjective optimization method

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Increasing the density of available pareto optimal solutions

    Get PDF
    The set of available multi-objective optimization algorithms continues to grow. This fact can be partially attributed to their widespread use and applicability. However this increase also suggests several issues remain to be addressed satisfactorily. One such issue is the diversity and the number of solutions available to the decision maker (DM). Even for algorithms very well suited for a particular problem, it is difficult - mainly due to the computational cost - to use a population large enough to ensure the likelihood of obtaining a solution close to the DMs preferences. In this paper we present a novel methodology that produces additional Pareto optimal solutions from a Pareto optimal set obtained at the end run of any multi-objective optimization algorithm. This method, which we refer to as Pareto estimation, is tested against a set of 2 and 3-objective test problems and a 3-objective portfolio optimization problem to illustrate its’ utility for a real-world problem

    Surrogate-Assisted Unified Optimization Framework for Investigating Marine Structural Design Under Information Uncertainty.

    Full text link
    Structural decisions made in the early stages of marine systems design can have a large impact on future acquisition, maintenance and life-cycle costs. However, owing to the unique nature of early stage marine system design, these critical structure decisions are often made on the basis of incomplete information or knowledge about the design. When coupled with design optimization analysis, the complex, uncertain early stage design environment makes it very difficult to deliver a quantified trade-off analysis for decision making. This work presents a novel decision support method that integrates design optimization, high-fidelity analysis, and modeling of information uncertainty for early stage design and analysis. To support this method this dissertation improves the design optimization methods for marine structures by proposing several novel surrogate modeling techniques and strategies. The proposed work treats the uncertainties that are sourced from limited information in a non-statistical interval uncertainty form. This interval uncertainty is treated as an objective function in an optimization framework in order to explore the impact of information uncertainty on structural design performance. In this examination, the potential structural weight penalty regarding information uncertainty can be quickly identified in early stage, avoiding costly redesign later in the design. This dissertation then continues to explore a balanced computational structure between fidelity and efficiency. A proposed novel variable fidelity approach can be applied to wisely allocate expensive high-fidelity computational simulations. In achieving the proposed capabilities for design optimization, several surrogate modeling methods are developed concerning worst-case estimation, clustered multiple meta-modeling, and mixed variable modeling techniques. These surrogate methods have been demonstrated to significantly improve the efficiency of optimizer in dealing with the challenges of early stage marine structure design.PhDNaval Architecture and Marine EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133365/1/yanliuch_1.pd

    Landscape Analysis for Surrogate Models in the Evolutionary Black-Box Context

    Full text link
    Surrogate modeling has become a valuable technique for black-box optimization tasks with expensive evaluation of the objective function. In this paper, we investigate the relationship between the predictive accuracy of surrogate models and features of the black-box function landscape. We also study properties of features for landscape analysis in the context of different transformations and ways of selecting the input data. We perform the landscape analysis of a large set of data generated using runs of a surrogate-assisted version of the Covariance Matrix Adaptation Evolution Strategy on the noiseless part of the Comparing Continuous Optimisers benchmark function testbed.Comment: 25 pages main article, 28 pages supplementary material, 3 figures, currently under review at Evolutionary Computation journa
    • …
    corecore