8,176 research outputs found

    MAGAN: Margin Adaptation for Generative Adversarial Networks

    Full text link
    We propose the Margin Adaptation for Generative Adversarial Networks (MAGANs) algorithm, a novel training procedure for GANs to improve stability and performance by using an adaptive hinge loss function. We estimate the appropriate hinge loss margin with the expected energy of the target distribution, and derive principled criteria for when to update the margin. We prove that our method converges to its global optimum under certain assumptions. Evaluated on the task of unsupervised image generation, the proposed training procedure is simple yet robust on a diverse set of data, and achieves qualitative and quantitative improvements compared to the state-of-the-art

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    CONAN: Complementary Pattern Augmentation for Rare Disease Detection

    Full text link
    Rare diseases affect hundreds of millions of people worldwide but are hard to detect since they have extremely low prevalence rates (varying from 1/1,000 to 1/200,000 patients) and are massively underdiagnosed. How do we reliably detect rare diseases with such low prevalence rates? How to further leverage patients with possibly uncertain diagnosis to improve detection? In this paper, we propose a Complementary pattern Augmentation (CONAN) framework for rare disease detection. CONAN combines ideas from both adversarial training and max-margin classification. It first learns self-attentive and hierarchical embedding for patient pattern characterization. Then, we develop a complementary generative adversarial networks (GAN) model to generate candidate positive and negative samples from the uncertain patients by encouraging a max-margin between classes. In addition, CONAN has a disease detector that serves as the discriminator during the adversarial training for identifying rare diseases. We evaluated CONAN on two disease detection tasks. For low prevalence inflammatory bowel disease (IBD) detection, CONAN achieved .96 precision recall area under the curve (PR-AUC) and 50.1% relative improvement over best baseline. For rare disease idiopathic pulmonary fibrosis (IPF) detection, CONAN achieves .22 PR-AUC with 41.3% relative improvement over the best baseline
    corecore