72 research outputs found

    Weakly Submodular Functions

    Full text link
    Submodular functions are well-studied in combinatorial optimization, game theory and economics. The natural diminishing returns property makes them suitable for many applications. We study an extension of monotone submodular functions, which we call {\em weakly submodular functions}. Our extension includes some (mildly) supermodular functions. We show that several natural functions belong to this class and relate our class to some other recent submodular function extensions. We consider the optimization problem of maximizing a weakly submodular function subject to uniform and general matroid constraints. For a uniform matroid constraint, the "standard greedy algorithm" achieves a constant approximation ratio where the constant (experimentally) converges to 5.95 as the cardinality constraint increases. For a general matroid constraint, a simple local search algorithm achieves a constant approximation ratio where the constant (analytically) converges to 10.22 as the rank of the matroid increases

    Differentially Private Decomposable Submodular Maximization

    Full text link
    We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem [Papadimitriou et al., 2008]. Previous work by Gupta et al. [2010] gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating empirical performance, which improves over the differentially private algorithms for the general case of submodular maximization and is close to the performance of non-private algorithms

    Max-sum diversity via convex programming

    Get PDF
    Diversity maximization is an important concept in information retrieval, computational geometry and operations research. Usually, it is a variant of the following problem: Given a ground set, constraints, and a function f(ā‹…)f(\cdot) that measures diversity of a subset, the task is to select a feasible subset SS such that f(S)f(S) is maximized. The \emph{sum-dispersion} function f(S)=āˆ‘x,yāˆˆSd(x,y)f(S) = \sum_{x,y \in S} d(x,y), which is the sum of the pairwise distances in SS, is in this context a prominent diversification measure. The corresponding diversity maximization is the \emph{max-sum} or \emph{sum-sum diversification}. Many recent results deal with the design of constant-factor approximation algorithms of diversification problems involving sum-dispersion function under a matroid constraint. In this paper, we present a PTAS for the max-sum diversification problem under a matroid constraint for distances d(ā‹…,ā‹…)d(\cdot,\cdot) of \emph{negative type}. Distances of negative type are, for example, metric distances stemming from the ā„“2\ell_2 and ā„“1\ell_1 norm, as well as the cosine or spherical, or Jaccard distance which are popular similarity metrics in web and image search

    Diverse Rule Sets

    Full text link
    While machine-learning models are flourishing and transforming many aspects of everyday life, the inability of humans to understand complex models poses difficulties for these models to be fully trusted and embraced. Thus, interpretability of models has been recognized as an equally important quality as their predictive power. In particular, rule-based systems are experiencing a renaissance owing to their intuitive if-then representation. However, simply being rule-based does not ensure interpretability. For example, overlapped rules spawn ambiguity and hinder interpretation. Here we propose a novel approach of inferring diverse rule sets, by optimizing small overlap among decision rules with a 2-approximation guarantee under the framework of Max-Sum diversification. We formulate the problem as maximizing a weighted sum of discriminative quality and diversity of a rule set. In order to overcome an exponential-size search space of association rules, we investigate several natural options for a small candidate set of high-quality rules, including frequent and accurate rules, and examine their hardness. Leveraging the special structure in our formulation, we then devise an efficient randomized algorithm, which samples rules that are highly discriminative and have small overlap. The proposed sampling algorithm analytically targets a distribution of rules that is tailored to our objective. We demonstrate the superior predictive power and interpretability of our model with a comprehensive empirical study against strong baselines
    • ā€¦
    corecore