31,648 research outputs found

    On the hardness of switching to a small number of edges

    Full text link
    Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other one by a sequence of switches. Jel\'inkov\'a et al. [DMTCS 13, no. 2, 2011] presented a proof that it is NP-complete to decide if the input graph can be switched to contain at most a given number of edges. There turns out to be a flaw in their proof. We present a correct proof. Furthermore, we prove that the problem remains NP-complete even when restricted to graphs whose density is bounded from above by an arbitrary fixed constant. This partially answers a question of Matou\v{s}ek and Wagner [Discrete Comput. Geom. 52, no. 1, 2014].Comment: 19 pages, 7 figures. An extended abstract submitted to COCOON 201

    Inapproximability of Combinatorial Optimization Problems

    Full text link
    We survey results on the hardness of approximating combinatorial optimization problems

    The Complexity of Rationalizing Network Formation

    Get PDF
    We study the complexity of rationalizing network formation. In this problem we fix an underlying model describing how selfish parties (the vertices) produce a graph by making individual decisions to form or not form incident edges. The model is equipped with a notion of stability (or equilibrium), and we observe a set of "snapshots" of graphs that are assumed to be stable. From this we would like to infer some unobserved data about the system: edge prices, or how much each vertex values short paths to each other vertex. We study two rationalization problems arising from the network formation model of Jackson and Wolinsky [14]. When the goal is to infer edge prices, we observe that the rationalization problem is easy. The problem remains easy even when rationalizing prices do not exist and we instead wish to find prices that maximize the stability of the system. In contrast, when the edge prices are given and the goal is instead to infer valuations of each vertex by each other vertex, we prove that the rationalization problem becomes NP-hard. Our proof exposes a close connection between rationalization problems and the Inequality-SAT (I-SAT) problem. Finally and most significantly, we prove that an approximation version of this NP-complete rationalization problem is NP-hard to approximate to within better than a 1/2 ratio. This shows that the trivial algorithm of setting everyone's valuations to infinity (which rationalizes all the edges present in the input graphs) or to zero (which rationalizes all the non-edges present in the input graphs) is the best possible assuming P ≠ NP To do this we prove a tight (1/2 + δ) -approximation hardness for a variant of I-SAT in which all coefficients are non-negative. This in turn follows from a tight hardness result for MAX-LlN_(R_+) (linear equations over the reals, with non-negative coefficients), which we prove by a (non-trivial) modification of the recent result of Guruswami and Raghavendra [10] which achieved tight hardness for this problem without the non-negativity constraint. Our technical contributions regarding the hardness of I-SAT and MAX-LIN_(R_+) may be of independent interest, given the generality of these problem

    Improved Inapproximability Results for Maximum k-Colorable Subgraph

    Full text link
    We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring properly colors an expected fraction 1-1/k of edges. We prove that given a graph promised to be k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction ~1-O(1/k} of edges. Previously, only a hardness factor of 1-O(1/k^2) was known. Our result pins down the correct asymptotic dependence of the approximation factor on k. Along the way, we prove that approximating the Maximum 3-colorable subgraph problem within a factor greater than 32/33 is NP-hard. Using semidefinite programming, it is known that one can do better than a random coloring and properly color a fraction 1-1/k +2 ln k/k^2 of edges in polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1-1/k + O(ln k/ k^2) of edges of a k-colorable graph.Comment: 16 pages, 2 figure

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33
    corecore