50 research outputs found

    On perturbations of highly connected dyadic matroids

    Get PDF
    Geelen, Gerards, and Whittle [3] announced the following result: let q=pkq = p^k be a prime power, and let M\mathcal{M} be a proper minor-closed class of GF(q)\mathrm{GF}(q)-representable matroids, which does not contain PG(r−1,p)\mathrm{PG}(r-1,p) for sufficiently high rr. There exist integers k,tk, t such that every vertically kk-connected matroid in M\mathcal{M} is a rank-(≤t)(\leq t) perturbation of a frame matroid or the dual of a frame matroid over GF(q)\mathrm{GF}(q). They further announced a characterization of the perturbations through the introduction of subfield templates and frame templates. We show a family of dyadic matroids that form a counterexample to this result. We offer several weaker conjectures to replace the ones in [3], discuss consequences for some published papers, and discuss the impact of these new conjectures on the structure of frame templates.Comment: Version 3 has a new title and a few other minor corrections; 38 pages, including a 6-page Jupyter notebook that contains SageMath code and that is also available in the ancillary file

    On Network Coding Capacity - Matroidal Networks and Network Capacity Regions

    Get PDF
    One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.Comment: Master of Engineering Thesis, MIT, September 2010, 70 pages, 10 figure

    Secret-Sharing Matroids need not be Algebraic

    Full text link
    We combine some known results and techniques with new ones to show that there exists a non-algebraic, multi-linear matroid. This answers an open question by Matus (Discrete Mathematics 1999), and an open question by Pendavingh and van Zwam (Advances in Applied Mathematics 2013). The proof is constructive and the matroid is explicitly given

    The moduli space of matroids

    Get PDF
    In the first part of the paper, we clarify the connections between several algebraic objects appearing in matroid theory: both partial fields and hyperfields are fuzzy rings, fuzzy rings are tracts, and these relations are compatible with the respective matroid theories. Moreover, fuzzy rings are ordered blueprints and lie in the intersection of tracts with ordered blueprints; we call the objects of this intersection pastures. In the second part, we construct moduli spaces for matroids over pastures. We show that, for any non-empty finite set EE, the functor taking a pasture FF to the set of isomorphism classes of rank-rr FF-matroids on EE is representable by an ordered blue scheme Mat(r,E)Mat(r,E), the moduli space of rank-rr matroids on EE. In the third part, we draw conclusions on matroid theory. A classical rank-rr matroid MM on EE corresponds to a K\mathbb{K}-valued point of Mat(r,E)Mat(r,E) where K\mathbb{K} is the Krasner hyperfield. Such a point defines a residue pasture kMk_M, which we call the universal pasture of MM. We show that for every pasture FF, morphisms kM→Fk_M\to F are canonically in bijection with FF-matroid structures on MM. An analogous weak universal pasture kMwk_M^w classifies weak FF-matroid structures on MM. The unit group of kMwk_M^w can be canonically identified with the Tutte group of MM. We call the sub-pasture kMfk_M^f of kMwk_M^w generated by ``cross-ratios' the foundation of MM,. It parametrizes rescaling classes of weak FF-matroid structures on MM, and its unit group is coincides with the inner Tutte group of MM. We show that a matroid MM is regular if and only if its foundation is the regular partial field, and a non-regular matroid MM is binary if and only if its foundation is the field with two elements. This yields a new proof of the fact that a matroid is regular if and only if it is both binary and orientable.Comment: 83 page

    On the existence of asymptotically good linear codes in minor-closed classes

    Full text link
    Let C=(C1,C2,…)\mathcal{C} = (C_1, C_2, \ldots) be a sequence of codes such that each CiC_i is a linear [ni,ki,di][n_i,k_i,d_i]-code over some fixed finite field F\mathbb{F}, where nin_i is the length of the codewords, kik_i is the dimension, and did_i is the minimum distance. We say that C\mathcal{C} is asymptotically good if, for some ε>0\varepsilon > 0 and for all ii, ni≥in_i \geq i, ki/ni≥εk_i/n_i \geq \varepsilon, and di/ni≥εd_i/n_i \geq \varepsilon. Sequences of asymptotically good codes exist. We prove that if C\mathcal{C} is a class of GF(pn)(p^n)-linear codes (where pp is prime and n≥1n \geq 1), closed under puncturing and shortening, and if C\mathcal{C} contains an asymptotically good sequence, then C\mathcal{C} must contain all GF(p)(p)-linear codes. Our proof relies on a powerful new result from matroid structure theory

    Templates for Representable Matroids

    Get PDF
    The matroid structure theory of Geelen, Gerards, and Whittle has led to a hypothesis that a highly connected member of a minor-closed class of matroids representable over a finite field is a mild modification (known as a perturbation) of a frame matroid, the dual of a frame matroid, or a matroid representable over a proper subfield. They introduced the notion of a template to describe these perturbations in more detail. In this dissertation, we determine these templates for various classes and use them to prove results about representability, extremal functions, and excluded minors. Chapter 1 gives a brief introduction to matroids and matroid structure theory. Chapters 2 and 3 analyze this hypothesis of Geelen, Gerards, and Whittle and propose some refined hypotheses. In Chapter 3, we define frame templates and discuss various notions of template equivalence. Chapter 4 gives some details on how templates relate to each other. We define a preorder on the set of frame templates over a finite field, and we determine the minimal nontrivial templates with respect to this preorder. We also study in significant depth a specific type of template that is pertinent to many applications. Chapters 5 and 6 apply the results of Chapters 3 and 4 to several subclasses of the binary matroids and the quaternary matroids---those matroids representable over the fields of two and four elements, respectively. Two of the classes we study in Chapter 5 are the even-cycle matroids and the even-cut matroids. Each of these classes has hundreds of excluded minors. We show that, for highly connected matroids, two or three excluded minors suffice. We also show that Seymour\u27s 1-Flowing Conjecture holds for sufficiently highly connected matroids. In Chapter 6, we completely characterize the highly connected members of the class of golden-mean matroids and several other closely related classes of quaternary matroids. This leads to a determination of the extremal functions for these classes, verifying a conjecture of Archer for matroids of sufficiently large rank
    corecore