63 research outputs found

    Polyhedra with the Integer Caratheodory Property

    Full text link
    A polyhedron P has the Integer Caratheodory Property if the following holds. For any positive integer k and any integer vector w in kP, there exist affinely independent integer vectors x_1,...,x_t in P and positive integers n_1,...,n_t such that n_1+...+n_t=k and w=n_1x_1+...+n_tx_t. In this paper we prove that if P is a (poly)matroid base polytope or if P is defined by a TU matrix, then P and projections of P satisfy the integer Caratheodory property.Comment: 12 page

    Secret sharing schemes: Optimizing the information ratio

    Get PDF
    Secret sharing refers to methods used to distribute a secret value among a set of participants. This work deals with the optimization of two parameters regarding the efficiency of a secret sharing scheme: the information ratio and average information ratio. Only access structures (a special family of sets) on 5 and 6 participants will be considered. First, access structures with 5 participants will be studied, followed by the ones on 6 participants that are based on graphs. The main goal of the paper is to check existing lower bounds (and improve some of them) by using linear programs with the sage solver. Shannon information inequalities have been used to translate the polymatroid axioms into linear constraints

    Representability of Matroids by c-Arrangements is Undecidable

    Full text link
    For a natural number cc, a cc-arrangement is an arrangement of dimension cc subspaces satisfying the following condition: the sum of any subset of the subspaces has dimension a multiple of cc. Matroids arising as normalized rank functions of cc-arrangements are also known as multilinear matroids. We prove that it is algorithmically undecidable whether there exists a cc such that a given matroid has a cc-arrangement representation, or equivalently whether the matroid is multilinear. It follows that certain network coding problems are also undecidable. In the proof, we introduce a generalized Dowling geometry to encode an instance of the uniform word problem for finite groups in matroids of rank three. The cc-arrangement condition gives rise to some difficulties and their resolution is the main part of the paper.Comment: Improved exposition and added application to network codin

    Entropy Region and Convolution

    Get PDF
    The entropy region is constructed from vectors of random variables by collecting Shannon entropies of all subvectors. Its shape is studied here by means of polymatroidal constructions, notably by convolution. The closure of the region is decomposed into the direct sum of tight and modular parts, reducing the study to the tight part. The relative interior of the reduction belongs to the entropy region. Behavior of the decomposition under self-adhesivity is clarified. Results are specialized and extended to the region constructed from four tuples of random variables. This and computer experiments help to visualize approximations of a symmetrized part of the entropy region. The four-atom conjecture on the minimal Ingleton score is refuted. © 2016 IEEE

    Budget feasible mechanisms on matroids

    Get PDF
    Motivated by many practical applications, in this paper we study budget feasible mechanisms where the goal is to procure independent sets from matroids. More specifically, we are given a matroid =(,) where each ground (indivisible) element is a selfish agent. The cost of each element (i.e., for selling the item or performing a service) is only known to the element itself. There is a buyer with a budget having additive valuations over the set of elements E. The goal is to design an incentive compatible (truthful) budget feasible mechanism which procures an independent set of the matroid under the given budget that yields the largest value possible to the buyer. Our result is a deterministic, polynomial-time, individually rational, truthful and budget feasible mechanism with 4-approximation to the optimal independent set. Then, we extend our mechanism to the setting of matroid intersections in which the goal is to procure common independent sets from multiple matroids. We show that, given a polynomial time deterministic blackbox that returns -approximation solutions to the matroid intersection problem, there exists a deterministic, polynomial time, individually rational, truthful and budget feasible mechanism with (3+1) -approximation to the optimal common independent set
    corecore