4,270 research outputs found

    Mixture of Bilateral-Projection Two-dimensional Probabilistic Principal Component Analysis

    Full text link
    The probabilistic principal component analysis (PPCA) is built upon a global linear mapping, with which it is insufficient to model complex data variation. This paper proposes a mixture of bilateral-projection probabilistic principal component analysis model (mixB2DPPCA) on 2D data. With multi-components in the mixture, this model can be seen as a soft cluster algorithm and has capability of modeling data with complex structures. A Bayesian inference scheme has been proposed based on the variational EM (Expectation-Maximization) approach for learning model parameters. Experiments on some publicly available databases show that the performance of mixB2DPPCA has been largely improved, resulting in more accurate reconstruction errors and recognition rates than the existing PCA-based algorithms

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data

    Locality Preserving Projections for Grassmann manifold

    Full text link
    Learning on Grassmann manifold has become popular in many computer vision tasks, with the strong capability to extract discriminative information for imagesets and videos. However, such learning algorithms particularly on high-dimensional Grassmann manifold always involve with significantly high computational cost, which seriously limits the applicability of learning on Grassmann manifold in more wide areas. In this research, we propose an unsupervised dimensionality reduction algorithm on Grassmann manifold based on the Locality Preserving Projections (LPP) criterion. LPP is a commonly used dimensionality reduction algorithm for vector-valued data, aiming to preserve local structure of data in the dimension-reduced space. The strategy is to construct a mapping from higher dimensional Grassmann manifold into the one in a relative low-dimensional with more discriminative capability. The proposed method can be optimized as a basic eigenvalue problem. The performance of our proposed method is assessed on several classification and clustering tasks and the experimental results show its clear advantages over other Grassmann based algorithms.Comment: Accepted by IJCAI 201

    Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed---either explicitly or implicitly---to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis

    Covariance approximation for large multivariate spatial data sets with an application to multiple climate model errors

    Get PDF
    This paper investigates the cross-correlations across multiple climate model errors. We build a Bayesian hierarchical model that accounts for the spatial dependence of individual models as well as cross-covariances across different climate models. Our method allows for a nonseparable and nonstationary cross-covariance structure. We also present a covariance approximation approach to facilitate the computation in the modeling and analysis of very large multivariate spatial data sets. The covariance approximation consists of two parts: a reduced-rank part to capture the large-scale spatial dependence, and a sparse covariance matrix to correct the small-scale dependence error induced by the reduced rank approximation. We pay special attention to the case that the second part of the approximation has a block-diagonal structure. Simulation results of model fitting and prediction show substantial improvement of the proposed approximation over the predictive process approximation and the independent blocks analysis. We then apply our computational approach to the joint statistical modeling of multiple climate model errors.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS478 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore