7,151 research outputs found

    Matrix norms and rapid mixing for spin systems

    Get PDF
    We give a systematic development of the application of matrix norms to rapid mixing in spin systems. We show that rapid mixing of both random update Glauber dynamics and systematic scan Glauber dynamics occurs if any matrix norm of the associated dependency matrix is less than 1. We give improved analysis for the case in which the diagonal of the dependency matrix is 0\mathbf{0} (as in heat bath dynamics). We apply the matrix norm methods to random update and systematic scan Glauber dynamics for coloring various classes of graphs. We give a general method for estimating a norm of a symmetric nonregular matrix. This leads to improved mixing times for any class of graphs which is hereditary and sufficiently sparse including several classes of degree-bounded graphs such as nonregular graphs, trees, planar graphs and graphs with given tree-width and genus.Comment: Published in at http://dx.doi.org/10.1214/08-AAP532 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Rapid mixing of Swendsen-Wang and single-bond dynamics in two dimensions

    Full text link
    We prove that the spectral gap of the Swendsen-Wang dynamics for the random-cluster model on arbitrary graphs with m edges is bounded above by 16 m log m times the spectral gap of the single-bond (or heat-bath) dynamics. This and the corresponding lower bound imply that rapid mixing of these two dynamics is equivalent. Using the known lower bound on the spectral gap of the Swendsen-Wang dynamics for the two dimensional square lattice ZL2Z_L^2 of side length L at high temperatures and a result for the single-bond dynamics on dual graphs, we obtain rapid mixing of both dynamics on ZL2\Z_L^2 at all non-critical temperatures. In particular this implies, as far as we know, the first proof of rapid mixing of a classical Markov chain for the Ising model on ZL2\Z_L^2 at all temperatures.Comment: 20 page

    Area law for fixed points of rapidly mixing dissipative quantum systems

    Get PDF
    We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure, or the system is frustration free.Comment: 17 pages, 1 figure. Final versio

    Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results

    Full text link
    Recent results establish for 2-spin antiferromagnetic systems that the computational complexity of approximating the partition function on graphs of maximum degree D undergoes a phase transition that coincides with the uniqueness phase transition on the infinite D-regular tree. For the ferromagnetic Potts model we investigate whether analogous hardness results hold. Goldberg and Jerrum showed that approximating the partition function of the ferromagnetic Potts model is at least as hard as approximating the number of independent sets in bipartite graphs (#BIS-hardness). We improve this hardness result by establishing it for bipartite graphs of maximum degree D. We first present a detailed picture for the phase diagram for the infinite D-regular tree, giving a refined picture of its first-order phase transition and establishing the critical temperature for the coexistence of the disordered and ordered phases. We then prove for all temperatures below this critical temperature that it is #BIS-hard to approximate the partition function on bipartite graphs of maximum degree D. As a corollary, it is #BIS-hard to approximate the number of k-colorings on bipartite graphs of maximum degree D when k <= D/(2 ln D). The #BIS-hardness result for the ferromagnetic Potts model uses random bipartite regular graphs as a gadget in the reduction. The analysis of these random graphs relies on recent connections between the maxima of the expectation of their partition function, attractive fixpoints of the associated tree recursions, and induced matrix norms. We extend these connections to random regular graphs for all ferromagnetic models and establish the Bethe prediction for every ferromagnetic spin system on random regular graphs. We also prove for the ferromagnetic Potts model that the Swendsen-Wang algorithm is torpidly mixing on random D-regular graphs at the critical temperature for large q.Comment: To appear in SIAM J. Computin

    Comparison of Swendsen-Wang and Heat-Bath Dynamics

    Full text link
    We prove that the spectral gap of the Swendsen-Wang process for the Potts model on graphs with bounded degree is bounded from below by some constant times the spectral gap of any single-spin dynamics. This implies rapid mixing of the Swendsen-Wang process for the two-dimensional Potts model at all temperatures above the critical one, as well as rapid mixing at the critical temperature for the Ising model. After this we introduce a modified version of the Swendsen-Wang algorithm for planar graphs and prove rapid mixing for the two-dimensional Potts models at all non-critical temperatures.Comment: 22 pages, 1 figur

    Rapid mixing of Swendsen-Wang dynamics in two dimensions

    Full text link
    We prove comparison results for the Swendsen-Wang (SW) dynamics, the heat-bath (HB) dynamics for the Potts model and the single-bond (SB) dynamics for the random-cluster model on arbitrary graphs. In particular, we prove that rapid mixing of HB implies rapid mixing of SW on graphs with bounded maximum degree and that rapid mixing of SW and rapid mixing of SB are equivalent. Additionally, the spectral gap of SW and SB on planar graphs is bounded from above and from below by the spectral gap of these dynamics on the corresponding dual graph with suitably changed temperature. As a consequence we obtain rapid mixing of the Swendsen-Wang dynamics for the Potts model on the two-dimensional square lattice at all non-critical temperatures as well as rapid mixing for the two-dimensional Ising model at all temperatures. Furthermore, we obtain new results for general graphs at high or low enough temperatures.Comment: Ph.D. thesis, 66 page

    Spatial Mixing and Non-local Markov chains

    Full text link
    We consider spin systems with nearest-neighbor interactions on an nn-vertex dd-dimensional cube of the integer lattice graph Zd\mathbb{Z}^d. We study the effects that exponential decay with distance of spin correlations, specifically the strong spatial mixing condition (SSM), has on the rate of convergence to equilibrium distribution of non-local Markov chains. We prove that SSM implies O(logn)O(\log n) mixing of a block dynamics whose steps can be implemented efficiently. We then develop a methodology, consisting of several new comparison inequalities concerning various block dynamics, that allow us to extend this result to other non-local dynamics. As a first application of our method we prove that, if SSM holds, then the relaxation time (i.e., the inverse spectral gap) of general block dynamics is O(r)O(r), where rr is the number of blocks. A second application of our technology concerns the Swendsen-Wang dynamics for the ferromagnetic Ising and Potts models. We show that SSM implies an O(1)O(1) bound for the relaxation time. As a by-product of this implication we observe that the relaxation time of the Swendsen-Wang dynamics in square boxes of Z2\mathbb{Z}^2 is O(1)O(1) throughout the subcritical regime of the qq-state Potts model, for all q2q \ge 2. We also prove that for monotone spin systems SSM implies that the mixing time of systematic scan dynamics is O(logn(loglogn)2)O(\log n (\log \log n)^2). Systematic scan dynamics are widely employed in practice but have proved hard to analyze. Our proofs use a variety of techniques for the analysis of Markov chains including coupling, functional analysis and linear algebra

    Quantum logarithmic Sobolev inequalities and rapid mixing

    Get PDF
    A family of logarithmic Sobolev inequalities on finite dimensional quantum state spaces is introduced. The framework of non-commutative \bL_p-spaces is reviewed and the relationship between quantum logarithmic Sobolev inequalities and the hypercontractivity of quantum semigroups is discussed. This relationship is central for the derivation of lower bounds for the logarithmic Sobolev (LS) constants. Essential results for the family of inequalities are proved, and we show an upper bound to the generalized LS constant in terms of the spectral gap of the generator of the semigroup. These inequalities provide a framework for the derivation of improved bounds on the convergence time of quantum dynamical semigroups, when the LS constant and the spectral gap are of the same order. Convergence bounds on finite dimensional state spaces are particularly relevant for the field of quantum information theory. We provide a number of examples, where improved bounds on the mixing time of several semigroups are obtained; including the depolarizing semigroup and quantum expanders.Comment: Updated manuscript, 30 pages, no figure
    corecore