46,361 research outputs found

    Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain

    Get PDF
    Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited.Eje: IV - Workshop de procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI

    Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain

    Get PDF
    Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited.Eje: IV - Workshop de procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI

    A New Recursive Least-Squares Method with Multiple Forgetting Schemes

    Full text link
    We propose a recursive least-squares method with multiple forgetting schemes to track time-varying model parameters which change with different rates. Our approach hinges on the reformulation of the classic recursive least-squares with forgetting scheme as a regularized least squares problem. A simulation study shows the effectiveness of the proposed method

    Adaptive Evolutionary Clustering

    Full text link
    In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.Comment: To appear in Data Mining and Knowledge Discovery, MATLAB toolbox available at http://tbayes.eecs.umich.edu/xukevin/affec

    Recursive least squares for online dynamic identification on gas turbine engines

    Get PDF
    Online identification for a gas turbine engine is vital for health monitoring and control decisions because the engine electronic control system uses the identified model to analyze the performance for optimization of fuel consumption, a response to the pilot command, as well as engine life protection. Since a gas turbine engine is a complex system and operating at variant working conditions, it behaves nonlinearly through different power transition levels and at different operating points. An adaptive approach is required to capture the dynamics of its performance

    Recursive identification of time-varying Hammerstein systems with matrix forgetting

    Get PDF
    The real-time estimation of the time-varying Hammerstein system by using a noniterative learning schema is considered and extended to incorporate a matrix forgetting factor. The estimation is cast in a variational-Bayes framework to best emulate the original posterior distribution of the parameters within the set of distributions with feasible moments. The recursive concept we propose approximates the exact posterior comprising undistorted information about the estimated parameters. In many practical settings, the incomplete model of parameter variations is compensated by forgetting of obsolete information. As a rule, the forgetting operation is initiated by the inclusion of an appropriate prediction alternative into the time update. It is shown that the careful formulation of the prediction alternative, which relies on Bayesian conditioning, results in partial forgetting. This article inspects two options with respect to the order of the conditioning in the posterior, which proves vital in the successful localization of the source of inconsistency in the data-generating process. The geometric mean of the discussed alternatives then modifies recursive learning through the matrix forgetting factor. We adopt the decision-making approach to revisit the posterior uncertainty by dynamically allocating the probability to each of the prediction alternatives to be combined

    Subspace-Based Blind Channel Identification for Cyclic Prefix Systems Using Few Received Blocks

    Get PDF
    In this paper, a novel generalization of subspace-based blind channel identification methods in cyclic prefix (CP) systems is proposed. For the generalization, a new system parameter called repetition index is introduced whose value is unity for previously reported special cases. By choosing a repetition index larger than unity, the number of received blocks needed for blind identification is significantly reduced compared to all previously reported methods. This feature makes the method more realistic especially in wireless environments where the channel state is usually fast-varying. Given the number of received blocks available, the minimum value of repetition index is derived. Theoretical limit allows the proposed method to perform blind identification using only three received blocks in absence of noise. In practice, the number of received blocks needed to yield a satisfactory bit-error-rate (BER) performance is usually on the order of half the block size. Simulation results not only demonstrate the capability of the algorithm to perform blind identification using fewer received blocks, but also show that in some cases system performance can be improved by choosing a repetition index larger than needed. Simulation of the proposed method over time-varying channels clearly demonstrates the improvement over previously reported methods
    • …
    corecore