25,152 research outputs found

    Matrix factorization with Binary Components

    Full text link
    Motivated by an application in computational biology, we consider low-rank matrix factorization with {0,1}\{0,1\}-constraints on one of the factors and optionally convex constraints on the second one. In addition to the non-convexity shared with other matrix factorization schemes, our problem is further complicated by a combinatorial constraint set of size 2mâ‹…r2^{m \cdot r}, where mm is the dimension of the data points and rr the rank of the factorization. Despite apparent intractability, we provide - in the line of recent work on non-negative matrix factorization by Arora et al. (2012) - an algorithm that provably recovers the underlying factorization in the exact case with O(mr2r+mnr+r2n)O(m r 2^r + mnr + r^2 n) operations for nn datapoints. To obtain this result, we use theory around the Littlewood-Offord lemma from combinatorics.Comment: appeared in NIPS 201

    Learning latent features with infinite non-negative binary matrix tri-factorization

    Get PDF
    Non-negative Matrix Factorization (NMF) has been widely exploited to learn latent features from data. However, previous NMF models often assume a fixed number of features, saypfeatures, wherepis simply searched by experiments. Moreover, it is even difficult to learn binary features, since binary matrix involves more challenging optimization problems. In this paper, we propose a new Bayesian model called infinite non-negative binary matrix tri-factorizations model (iNBMT), capable of learning automatically the latent binary features as well as feature number based on Indian Buffet Process (IBP). Moreover, iNBMT engages a tri-factorization process that decomposes a nonnegative matrix into the product of three components including two binary matrices and a non-negative real matrix. Compared with traditional bi-factorization, the tri-factorization can better reveal the latent structures among items (samples) and attributes (features). Specifically, we impose an IBP prior on the two infinite binary matrices while a truncated Gaussian distribution is assumed on the weight matrix. To optimize the model, we develop an efficient modified maximization-expectation algorithm (ME-algorithm), with the iteration complexity one order lower than another recently-proposed Maximization-Expectation-IBP model[9]. We present the model definition, detail the optimization, and finally conduct a series of experiments. Experimental results demonstrate that our proposed iNBMT model significantly outperforms the other comparison algorithms in both synthetic and real data

    Machine Learning: Binary Non-negative Matrix Factorization

    Get PDF
    This bachelor thesis theoretically derives and implements an unsupervised probabilistic generative model called Binary Non-Negative Matrix Factorization. It is a simplification of the standard Non-Negative Matrix Factorization where the factorization into two matrices is restricted to one of them having only binary components instead of continuous components. This simplifies the computation making it exactly solvable while keeping most of the learning capabilities and connects the algorithm to a modified version of Binary Sparse Coding. The learning phase of the model is performed using the EM algorithm, an iterative method that maximizes the likelihood function with respect to the parameters to be learned in a two-step process. The model is tested on artificial data and it is shown to learn the hidden parameters on these simple data although it fails to work properly when applied to real data

    Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach

    Full text link
    The increasing availability of temporal network data is calling for more research on extracting and characterizing mesoscopic structures in temporal networks and on relating such structure to specific functions or properties of the system. An outstanding challenge is the extension of the results achieved for static networks to time-varying networks, where the topological structure of the system and the temporal activity patterns of its components are intertwined. Here we investigate the use of a latent factor decomposition technique, non-negative tensor factorization, to extract the community-activity structure of temporal networks. The method is intrinsically temporal and allows to simultaneously identify communities and to track their activity over time. We represent the time-varying adjacency matrix of a temporal network as a three-way tensor and approximate this tensor as a sum of terms that can be interpreted as communities of nodes with an associated activity time series. We summarize known computational techniques for tensor decomposition and discuss some quality metrics that can be used to tune the complexity of the factorized representation. We subsequently apply tensor factorization to a temporal network for which a ground truth is available for both the community structure and the temporal activity patterns. The data we use describe the social interactions of students in a school, the associations between students and school classes, and the spatio-temporal trajectories of students over time. We show that non-negative tensor factorization is capable of recovering the class structure with high accuracy. In particular, the extracted tensor components can be validated either as known school classes, or in terms of correlated activity patterns, i.e., of spatial and temporal coincidences that are determined by the known school activity schedule
    • …
    corecore