14,738 research outputs found

    Matrix Completion via Max-Norm Constrained Optimization

    Get PDF
    Matrix completion has been well studied under the uniform sampling model and the trace-norm regularized methods perform well both theoretically and numerically in such a setting. However, the uniform sampling model is unrealistic for a range of applications and the standard trace-norm relaxation can behave very poorly when the underlying sampling scheme is non-uniform. In this paper we propose and analyze a max-norm constrained empirical risk minimization method for noisy matrix completion under a general sampling model. The optimal rate of convergence is established under the Frobenius norm loss in the context of approximately low-rank matrix reconstruction. It is shown that the max-norm constrained method is minimax rate-optimal and yields a unified and robust approximate recovery guarantee, with respect to the sampling distributions. The computational effectiveness of this method is also discussed, based on first-order algorithms for solving convex optimizations involving max-norm regularization.Comment: 33 page

    A Max-Norm Constrained Minimization Approach to 1-Bit Matrix Completion

    Get PDF
    We consider in this paper the problem of noisy 1-bit matrix completion under a general non-uniform sampling distribution using the max-norm as a convex relaxation for the rank. A max-norm constrained maximum likelihood estimate is introduced and studied. The rate of convergence for the estimate is obtained. Information-theoretical methods are used to establish a minimax lower bound under the general sampling model. The minimax upper and lower bounds together yield the optimal rate of convergence for the Frobenius norm loss. Computational algorithms and numerical performance are also discussed.Comment: 33 pages, 3 figure

    Low-Rank Inducing Norms with Optimality Interpretations

    Full text link
    Optimization problems with rank constraints appear in many diverse fields such as control, machine learning and image analysis. Since the rank constraint is non-convex, these problems are often approximately solved via convex relaxations. Nuclear norm regularization is the prevailing convexifying technique for dealing with these types of problem. This paper introduces a family of low-rank inducing norms and regularizers which includes the nuclear norm as a special case. A posteriori guarantees on solving an underlying rank constrained optimization problem with these convex relaxations are provided. We evaluate the performance of the low-rank inducing norms on three matrix completion problems. In all examples, the nuclear norm heuristic is outperformed by convex relaxations based on other low-rank inducing norms. For two of the problems there exist low-rank inducing norms that succeed in recovering the partially unknown matrix, while the nuclear norm fails. These low-rank inducing norms are shown to be representable as semi-definite programs. Moreover, these norms have cheaply computable proximal mappings, which makes it possible to also solve problems of large size using first-order methods

    1-Bit Matrix Completion under Exact Low-Rank Constraint

    Full text link
    We consider the problem of noisy 1-bit matrix completion under an exact rank constraint on the true underlying matrix Mβˆ—M^*. Instead of observing a subset of the noisy continuous-valued entries of a matrix Mβˆ—M^*, we observe a subset of noisy 1-bit (or binary) measurements generated according to a probabilistic model. We consider constrained maximum likelihood estimation of Mβˆ—M^*, under a constraint on the entry-wise infinity-norm of Mβˆ—M^* and an exact rank constraint. This is in contrast to previous work which has used convex relaxations for the rank. We provide an upper bound on the matrix estimation error under this model. Compared to the existing results, our bound has faster convergence rate with matrix dimensions when the fraction of revealed 1-bit observations is fixed, independent of the matrix dimensions. We also propose an iterative algorithm for solving our nonconvex optimization with a certificate of global optimality of the limiting point. This algorithm is based on low rank factorization of Mβˆ—M^*. We validate the method on synthetic and real data with improved performance over existing methods.Comment: 6 pages, 3 figures, to appear in CISS 201
    • …
    corecore