750 research outputs found

    Greedy low-rank algorithm for spatial connectome regression

    Get PDF
    Recovering brain connectivity from tract tracing data is an important computational problem in the neurosciences. Mesoscopic connectome reconstruction was previously formulated as a structured matrix regression problem (Harris et al., 2016), but existing techniques do not scale to the whole-brain setting. The corresponding matrix equation is challenging to solve due to large scale, ill-conditioning, and a general form that lacks a convergent splitting. We propose a greedy low-rank algorithm for connectome reconstruction problem in very high dimensions. The algorithm approximates the solution by a sequence of rank-one updates which exploit the sparse and positive definite problem structure. This algorithm was described previously (Kressner and Sirkovi\'c, 2015) but never implemented for this connectome problem, leading to a number of challenges. We have had to design judicious stopping criteria and employ efficient solvers for the three main sub-problems of the algorithm, including an efficient GPU implementation that alleviates the main bottleneck for large datasets. The performance of the method is evaluated on three examples: an artificial "toy" dataset and two whole-cortex instances using data from the Allen Mouse Brain Connectivity Atlas. We find that the method is significantly faster than previous methods and that moderate ranks offer good approximation. This speedup allows for the estimation of increasingly large-scale connectomes across taxa as these data become available from tracing experiments. The data and code are available online

    Numerical Solution of Projected Algebraic Riccati Equations

    No full text

    A numerical comparison of solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems

    Full text link
    In this paper, we discuss numerical methods for solving large-scale continuous-time algebraic Riccati equations. These methods have been the focus of intensive research in recent years, and significant progress has been made in both the theoretical understanding and efficient implementation of various competing algorithms. There are several goals of this manuscript: first, to gather in one place an overview of different approaches for solving large-scale Riccati equations, and to point to the recent advances in each of them. Second, to analyze and compare the main computational ingredients of these algorithms, to detect their strong points and their potential bottlenecks. And finally, to compare the effective implementations of all methods on a set of relevant benchmark examples, giving an indication of their relative performance

    On the numerical solution of a class of systems of linear matrix equations

    Get PDF
    We consider the solution of systems of linear matrix equations in two or three unknown matrices. For dense problems we derive algorithms that determine the numerical solution by only involving matrices of the same size as those in the original problem, thus requiring low computational resources. For large and structured systems we show how the problem properties can be exploited to design effective algorithms with low memory and operation requirements. Numerical experiments illustrate the performance of the new methods

    Effizientes Lösen von großskaligen Riccati-Gleichungen und ein ODE-Framework für lineare Matrixgleichungen

    Get PDF
    This work considers the iterative solution of large-scale matrix equations. Due to the size of the system matrices in large-scale Riccati equations the solution can not be calculated directly but is approximated by a low rank matrix ZYZ^*. Herein Z is a basis of a low-dimensional rational Krylov subspace. The inner matrix Y is a small square matrix. Two ways to choose this inner matrix are examined: By imposing a rank condition on the Riccati residual and by projecting the Riccati residual onto the Krylov subspace generated by Z. The rank condition is motivated by the well-known ADI iteration. The ADI solutions span a rational Krylov subspace and yield a rank-p residual. It is proven that the rank-p condition guarantees existence and uniqueness of such an approximate solution. Known projection methods are generalized to oblique projections and a new formulation of the Riccati residual is derived, which allows for an efficient evaluation of the residual norm. Further a truncated approximate solution is characterized as the solution of a Riccati equation, which is projected to a subspace of the Krylov subspace generated by Z. For the approximate solution of Lyapunov equations a system of ordinary differential equations (ODEs) is solved via Runge-Kutta methods. It is shown that the space spanned by the approximate solution is a rational Krylov subspace with poles determined by the time step sizes and the eigenvalues of the matrices of the Butcher tableau of the used Runge-Kutta method. The method is applied to a model order reduction problem. The analytical solution of the system of ODEs satisfies an algebraic invariant. Those Runge-Kutta methods which preserve this algebraic invariant are characterized by a simple condition on the corresponding Butcher tableau. It is proven that these methods are equivalent to the ADI iteration. The invariance approach is transferred to Sylvester equations.Diese Arbeit befasst sich mit der numerischen Lösung hochdimensionaler Matrixgleichungen mittels iterativer Verfahren. Aufgrund der Größe der Systemmatrizen in großskaligen algebraischen Riccati-Gleichung kann die Lösung nicht direkt bestimmt werden, sondern wird durch eine approximative Lösung ZYZ^* von geringem Rang angenähert. Hierbei wird Z als Basis eines rationalen Krylovraums gewählt und enthält nur wenige Spalten. Die innere Matrix Y ist klein und quadratisch. Es werden zwei Wege untersucht, die Matrix Y zu wählen: Durch eine Rang-Bedingung an das Riccati-Residuum und durch Projektion des Riccati-Residuums auf den von Z erzeugten Krylovraum. Die Rang-Bedingung wird durch die wohlbekannten ADI-Verfahren motiviert. Die approximativen ADI-Lösungen spannen einen Krylovraum auf und führen zu einem Riccati-Residuum vom Rang p. Es wird bewiesen, dass die Rang-p-Bedingung Existenz und Eindeutigkeit einer solchen approximativen Lösung impliziert. Aus diesem Ergebnis werden effiziente iterative Verfahren abgeleitet, die eine solche approximative Lösung erzeugen. Bisher bekannte Projektionsverfahren werden auf schiefe Projektionen erweitert und es wird eine neue Formulierung des Riccati-Residuums hergeleitet, die eine effiziente Berechnung der Norm erlaubt. Weiter wird eine abgeschnittene approximative Lösung als Lösung einer Riccati-Gleichung charakterisiert, die auf einen Unterraum des von Z erzeugten Krylovraums projiziert wird. Um die Lösung der Lyapunov-Gleichung zu approximieren wird ein System gewöhnlicher Differentialgleichungen mittels Runge-Kutta-Verfahren numerisch gelöst. Es wird gezeigt, dass der von der approximativen Lösung aufgespannte Raum ein rationaler Krylovraum ist, dessen Pole von den Zeitschrittweiten der Integration und den Eigenwerten der Koeffizientenmatrix aus dem Butcher-Tableau des verwendeten Runge-Kutta-Verfahrens abhängen. Das Verfahren wird auf ein Problem der Modellreduktion angewendet. Die analytische Lösung des Differentialgleichungssystems erfüllt eine algebraische Invariante. Diejenigen Runge-Kutta-Verfahren, die diese Invariante erhalten, werden durch eine Bedingung an die zugehörigen Butcher-Tableaus charakterisiert. Es wird gezeigt, dass diese speziellen Verfahren äquivalent zur ADI-Iteration sind. Der Invarianten-Ansatz wird auf Sylvester-Gleichungen übertragen

    Discrete Geometric Structures in Homogenization and Inverse Homogenization with application to EIT

    Get PDF
    We introduce a new geometric approach for the homogenization and inverse homogenization of the divergence form elliptic operator with rough conductivity coefficients σ(x)\sigma(x) in dimension two. We show that conductivity coefficients are in one-to-one correspondence with divergence-free matrices and convex functions s(x)s(x) over the domain Ω\Omega. Although homogenization is a non-linear and non-injective operator when applied directly to conductivity coefficients, homogenization becomes a linear interpolation operator over triangulations of Ω\Omega when re-expressed using convex functions, and is a volume averaging operator when re-expressed with divergence-free matrices. Using optimal weighted Delaunay triangulations for linearly interpolating convex functions, we obtain an optimally robust homogenization algorithm for arbitrary rough coefficients. Next, we consider inverse homogenization and show how to decompose it into a linear ill-posed problem and a well-posed non-linear problem. We apply this new geometric approach to Electrical Impedance Tomography (EIT). It is known that the EIT problem admits at most one isotropic solution. If an isotropic solution exists, we show how to compute it from any conductivity having the same boundary Dirichlet-to-Neumann map. It is known that the EIT problem admits a unique (stable with respect to GG-convergence) solution in the space of divergence-free matrices. As such we suggest that the space of convex functions is the natural space in which to parameterize solutions of the EIT problem

    Numerical solution of large-scale linear matrix equations

    Get PDF
    We are interested in the numerical solution of large-scale linear matrix equations. In particular, due to their occurrence in many applications, we study the so-called Sylvester and Lyapunov equations. A characteristic aspect of the large-scale setting is that although data are sparse, the solution is in general dense so that storing it may be unfeasible. Therefore, it is necessary that the solution allows for a memory-saving approximation that can be cheaply stored. An extensive literature treats the case of the aforementioned equations with low-rank right-hand side. This assumption, together with certain hypotheses on the spectral distribution of the matrix coefficients, is a sufficient condition for proving a fast decay in the singular values of the solution. This decay motivates the search for a low-rank approximation so that only low-rank matrices are actually computed and stored remarkably reducing the storage demand. This is the task of the so-called low-rank methods and a large amount of work in this direction has been carried out in the last years. Projection methods have been shown to be among the most effective low-rank methods and in the first part of this thesis we propose some computational enhanchements of the classical algorithms. The case of equations with not necessarily low rank right-hand side has not been deeply analyzed so far and efficient methods are still lacking in the literature. In this thesis we aim to significantly contribute to this open problem by introducing solution methods for this kind of equations. In particular, we address the case when the coefficient matrices and the right-hand side are banded and we further generalize this structure considering quasiseparable data. In the last part of the thesis we study large-scale generalized Sylvester equations and, under some assumptions on the coefficient matrices, novel approximation spaces for their solution by projection are proposed
    corecore