2,377 research outputs found

    Graph ambiguity

    Get PDF
    In this paper, we propose a rigorous way to define the concept of ambiguity in the domain of graphs. In past studies, the classical definition of ambiguity has been derived starting from fuzzy set and fuzzy information theories. Our aim is to show that also in the domain of the graphs it is possible to derive a formulation able to capture the same semantic and mathematical concept. To strengthen the theoretical results, we discuss the application of the graph ambiguity concept to the graph classification setting, conceiving a new kind of inexact graph matching procedure. The results prove that the graph ambiguity concept is a characterizing and discriminative property of graphs. (C) 2013 Elsevier B.V. All rights reserved

    A study of the communication cost of the FFT on torus multicomputers

    Get PDF
    The computation of a one-dimensional FFT on a c-dimensional torus multicomputer is analyzed. Different approaches are proposed which differ in the way they use the interconnection network. The first approach is based on the multidimensional index mapping technique for the FFT computation. The second approach starts from a hypercube algorithm and then embeds the hypercube onto the torus. The third approach reduces the communication cost of the hypercube algorithm by pipelining the communication operations. A novel methodology to pipeline the communication operations on a torus is proposed. Analytical models are presented to compare the different approaches. This comparison study shows that the best approach depends on the number of dimensions of the torus and the communication start-up and transfer times. The analytical models allow us to select the most efficient approach for the available machine.Peer ReviewedPostprint (published version

    On palimpsests in neural memory: an information theory viewpoint

    Full text link
    The finite capacity of neural memory and the reconsolidation phenomenon suggest it is important to be able to update stored information as in a palimpsest, where new information overwrites old information. Moreover, changing information in memory is metabolically costly. In this paper, we suggest that information-theoretic approaches may inform the fundamental limits in constructing such a memory system. In particular, we define malleable coding, that considers not only representation length but also ease of representation update, thereby encouraging some form of recycling to convert an old codeword into a new one. Malleability cost is the difficulty of synchronizing compressed versions, and malleable codes are of particular interest when representing information and modifying the representation are both expensive. We examine the tradeoff between compression efficiency and malleability cost, under a malleability metric defined with respect to a string edit distance. This introduces a metric topology to the compressed domain. We characterize the exact set of achievable rates and malleability as the solution of a subgraph isomorphism problem. This is all done within the optimization approach to biology framework.Accepted manuscrip

    Distance-Dependent Kronecker Graphs for Modeling Social Networks

    Get PDF
    This paper focuses on a generalization of stochastic Kronecker graphs, introducing a Kronecker-like operator and defining a family of generator matrices H dependent on distances between nodes in a specified graph embedding. We prove that any lattice-based network model with sufficiently small distance-dependent connection probability will have a Poisson degree distribution and provide a general framework to prove searchability for such a network. Using this framework, we focus on a specific example of an expanding hypercube and discuss the similarities and differences of such a model with recently proposed network models based on a hidden metric space. We also prove that a greedy forwarding algorithm can find very short paths of length O((log log n)^2) on the hypercube with n nodes, demonstrating that distance-dependent Kronecker graphs can generate searchable network models

    Embedding cube-connected cycles graphs into faulty hypercubes

    Get PDF
    We consider the problem of embedding a cube-connected cycles graph (CCC) into a hypercube with edge faults. Our main result is an algorithm that, given a list of faulty edges, computes an embedding of the CCC that spans all of the nodes and avoids all of the faulty edges. The algorithm has optimal running time and tolerates the maximum number of faults (in a worst-case setting). Because ascend-descend algorithms can be implemented efficiently on a CCC, this embedding enables the implementation of ascend-descend algorithms, such as bitonic sort, on hypercubes with edge faults. We also present a number of related results, including an algorithm for embedding a CCC into a hypercube with edge and node faults and an algorithm for embedding a spanning torus into a hypercube with edge faults

    High speed all optical networks

    Get PDF
    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail

    Coxeter groups and random groups

    Full text link
    For every dimension d, there is an infinite family of convex co-compact reflection groups of isometries of hyperbolic d-space --- the superideal (simplicial and cubical) reflection groups --- with the property that a random group at any density less than a half (or in the few relators model) contains quasiconvex subgroups commensurable with some member of the family, with overwhelming probability.Comment: 18 pages, 14 figures; version 2 incorporates referee's correction

    â„“1-Rigid Graphs.

    Get PDF

    Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone

    Get PDF
    We investigate the completely positive semidefinite cone CS+n\mathcal{CS}_+^n, a new matrix cone consisting of all n×nn\times n matrices that admit a Gram representation by positive semidefinite matrices (of any size). In particular we study relationships between this cone and the completely positive and doubly nonnegative cones, and between its dual cone and trace positive non-commutative polynomials. We use this new cone to model quantum analogues of the classical independence and chromatic graph parameters α(G)\alpha(G) and χ(G)\chi(G), which are roughly obtained by allowing variables to be positive semidefinite matrices instead of 0/10/1 scalars in the programs defining the classical parameters. We can formulate these quantum parameters as conic linear programs over the cone CS+n\mathcal{CS}_+^n. Using this conic approach we can recover the bounds in terms of the theta number and define further approximations by exploiting the link to trace positive polynomials.Comment: Fixed some typo
    • …
    corecore