1,171 research outputs found

    Improved Lower Bounds for Testing Triangle-freeness in Boolean Functions via Fast Matrix Multiplication

    Get PDF
    Understanding the query complexity for testing linear-invariant properties has been a central open problem in the study of algebraic property testing. Triangle-freeness in Boolean functions is a simple property whose testing complexity is unknown. Three Boolean functions f1f_1, f2f_2 and f3:F2k→{0,1}f_3: \mathbb{F}_2^k \to \{0, 1\} are said to be triangle free if there is no x,y∈F2kx, y \in \mathbb{F}_2^k such that f1(x)=f2(y)=f3(x+y)=1f_1(x) = f_2(y) = f_3(x + y) = 1. This property is known to be strongly testable (Green 2005), but the number of queries needed is upper-bounded only by a tower of twos whose height is polynomial in 1 / \epsislon, where \epsislon is the distance between the tested function triple and triangle-freeness, i.e., the minimum fraction of function values that need to be modified to make the triple triangle free. A lower bound of (1/ϵ)2.423(1 / \epsilon)^{2.423} for any one-sided tester was given by Bhattacharyya and Xie (2010). In this work we improve this bound to (1/ϵ)6.619(1 / \epsilon)^{6.619}. Interestingly, we prove this by way of a combinatorial construction called \emph{uniquely solvable puzzles} that was at the heart of Coppersmith and Winograd's renowned matrix multiplication algorithm

    Asymptotic entanglement transformation between W and GHZ states

    Full text link
    We investigate entanglement transformations with stochastic local operations and classical communication (SLOCC) in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increase and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen we also compute the conversion rate from W to GHZ states.Comment: 11 page

    Primitive geodesic lengths and (almost) arithmetic progressions

    Get PDF
    In this article, we investigate when the set of primitive geodesic lengths on a Riemannian manifold have arbitrarily long arithmetic progressions. We prove that in the space of negatively curved metrics, a metric having such arithmetic progressions is quite rare. We introduce almost arithmetic progressions, a coarsification of arithmetic progressions, and prove that every negatively curved, closed Riemannian manifold has arbitrarily long almost arithmetic progressions in its primitive length spectrum. Concerning genuine arithmetic progressions, we prove that every non-compact, locally symmetric, arithmetic manifold has arbitrarily long arithmetic progressions in its primitive length spectrum. We end with a conjectural characterization of arithmeticity in terms of arithmetic progressions in the primitive length spectrum. We also suggest an approach to a well known spectral rigidity problem based on the scarcity of manifolds with arithmetic progressions.Comment: v3: 23 pages. To appear in Publ. Ma
    • …
    corecore