1,478 research outputs found

    Peaks and dips in Gaussian random fields: a new algorithm for the shear eigenvalues, and the excursion set theory

    Full text link
    We present a new algorithm to sample the constrained eigenvalues of the initial shear field associated with Gaussian statistics, called the `peak/dip excursion-set-based' algorithm, at positions which correspond to peaks or dips of the correlated density field. The computational procedure is based on a new formula which extends Doroshkevich's unconditional distribution for the eigenvalues of the linear tidal field, to account for the fact that halos and voids may correspond to maxima or minima of the density field. The ability to differentiate between random positions and special points in space around which halos or voids may form (peaks/dips), encoded in the new formula and reflected in the algorithm, naturally leads to a straightforward implementation of an excursion set model for peaks and dips in Gaussian random fields - one of the key advantages of this sampling procedure. In addition, it offers novel insights into the statistical description of the cosmic web. As a first physical application, we show how the standard distributions of shear ellipticity and prolateness in triaxial models of structure formation are modified by the constraint. In particular, we provide a new expression for the conditional distribution of shape parameters given the density peak constraint, which generalizes some previous literature work. The formula has important implications for the modeling of non-spherical dark matter halo shapes, in relation to their initial shape distribution. We also test and confirm our theoretical predictions for the individual distributions of eigenvalues subjected to the extremum constraint, along with other directly related conditional probabilities. Finally, we indicate how the proposed sampling procedure naturally integrates into the standard excursion set model, potentially solving some of its well-known problems, and into the ellipsoidal collapse framework. (abridged)Comment: 18 pages, 5 figures, MNRAS in pres

    Cross-diffusion systems for image processing: II. The nonlinear case

    Full text link
    In this paper the use of nonlinear cross-diffu\-sion systems to model image restoration is investigated, theoretically and numerically. In the first case, well-posedness, scale-space properties and long time behaviour are analyzed. From a numerical point of view, a computational study of the performance of the models is carried out, suggesting their diversity and potentialities to treat image filtering problems. The present paper is a continuation of a previous work of the same authors, devoted to linear cross-diffusion models. \keywords{Cross-diffusion \and Complex diffusion \and Image restoration

    Collective effects in cellular structure formation mediated by compliant environments: a Monte Carlo study

    Full text link
    Compliant environments can mediate interactions between mechanically active cells like fibroblasts. Starting with a phenomenological model for the behaviour of single cells, we use extensive Monte Carlo simulations to predict non-trivial structure formation for cell communities on soft elastic substrates as a function of elastic moduli, cell density, noise and cell position geometry. In general, we find a disordered structure as well as ordered string-like and ring-like structures. The transition between ordered and disordered structures is controlled both by cell density and noise level, while the transition between string- and ring-like ordered structures is controlled by the Poisson ratio. Similar effects are observed in three dimensions. Our results suggest that in regard to elastic effects, healthy connective tissue usually is in a macroscopically disordered state, but can be switched to a macroscopically ordered state by appropriate parameter variations, in a way that is reminiscent of wound contraction or diseased states like contracture.Comment: 45 pages, 7 postscript figures included, revised version accepted for publication in Acta Biomateriali

    Highly accurate schemes for PDE-based morphology with general structuring elements

    Get PDF
    The two fundamental operations in morphological image processing are dilation and erosion. These processes are defined via structuring elements. It is of practical interest to consider a variety of structuring element shapes. The realisation of dilation/erosion for convex structuring elements by use of partial differential equations (PDEs) allows for digital scalability and subpixel accuracy. However, numerical schemes suffer from blur by dissipative artifacts. In our paper we present a family of so-called flux-corrected transport (FCT) schemes that addresses this problem for arbitrary convex structuring elements. The main characteristics of the FCT-schemes are: (i) They keep edges very sharp during the morphological evolution process, and (ii) they feature a high degree of rotational invariance. We validate the FCT-scheme theoretically by proving consistency and stability. Numerical experiments with diamonds and ellipses as structuring elements show that FCT-schemes are superior to standard schemes in the field of PDE-based morphology

    Pattern formation on the surface of cationic-anionic cylindrical aggregates

    Full text link
    Charged pattern formation on the surfaces of self--assembled cylindrical micelles formed from oppositely charged heterogeneous molecules such as cationic and anionic peptide amphiphiles is investigated. The net incompatibility χ\chi among different components results in the formation of segregated domains, whose growth is inhibited by electrostatics. The transition to striped phases proceeds through an intermediate structure governed by fluctuations, followed by states with various lamellar orientations, which depend on cylinder radius RcR_c and χ\chi. We analyze the specific heat, susceptibility S(q∗)S(q^*), domain size Λ=2π/q∗\Lambda=2\pi/q^* and morphology as a function of RcR_c and χ\chi.Comment: Sent to PRL 11Jan05 Transferred from PRL to PRE 10Jun0
    • …
    corecore