1,786 research outputs found

    Reversible implementation of a disrete linear transformation

    Get PDF
    Discrete linear transformations form important steps in processing information. Many such transformations are injective and therefore are prime candidates for a physically reversible implementation into hardware. We present here the first steps towards a reversible digital implementation of two different integer transformations on four inputs: The Haar wavelet and the H.264 transform

    A parallel butterfly algorithm

    Full text link
    The butterfly algorithm is a fast algorithm which approximately evaluates a discrete analogue of the integral transform \int K(x,y) g(y) dy at large numbers of target points when the kernel, K(x,y), is approximately low-rank when restricted to subdomains satisfying a certain simple geometric condition. In d dimensions with O(N^d) quasi-uniformly distributed source and target points, when each appropriate submatrix of K is approximately rank-r, the running time of the algorithm is at most O(r^2 N^d log N). A parallelization of the butterfly algorithm is introduced which, assuming a message latency of \alpha and per-process inverse bandwidth of \beta, executes in at most O(r^2 N^d/p log N + \beta r N^d/p + \alpha)log p) time using p processes. This parallel algorithm was then instantiated in the form of the open-source DistButterfly library for the special case where K(x,y)=exp(i \Phi(x,y)), where \Phi(x,y) is a black-box, sufficiently smooth, real-valued phase function. Experiments on Blue Gene/Q demonstrate impressive strong-scaling results for important classes of phase functions. Using quasi-uniform sources, hyperbolic Radon transforms and an analogue of a 3D generalized Radon transform were respectively observed to strong-scale from 1-node/16-cores up to 1024-nodes/16,384-cores with greater than 90% and 82% efficiency, respectively.Comment: To appear in SIAM Journal on Scientific Computin

    Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions

    Get PDF
    Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets. This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed—either explicitly or implicitly—to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, robustness, and/or speed. These claims are supported by extensive numerical experiments and a detailed error analysis. The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast to O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multiprocessor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data
    corecore