1,003 research outputs found

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods

    Attention Mechanism for Recognition in Computer Vision

    Get PDF
    It has been proven that humans do not focus their attention on an entire scene at once when they perform a recognition task. Instead, they pay attention to the most important parts of the scene to extract the most discriminative information. Inspired by this observation, in this dissertation, the importance of attention mechanism in recognition tasks in computer vision is studied by designing novel attention-based models. In specific, four scenarios are investigated that represent the most important aspects of attention mechanism.First, an attention-based model is designed to reduce the visual features\u27 dimensionality by selectively processing only a small subset of the data. We study this aspect of the attention mechanism in a framework based on object recognition in distributed camera networks. Second, an attention-based image retrieval system (i.e., person re-identification) is proposed which learns to focus on the most discriminative regions of the person\u27s image and process those regions with higher computation power using a deep convolutional neural network. Furthermore, we show how visualizing the attention maps can make deep neural networks more interpretable. In other words, by visualizing the attention maps we can observe the regions of the input image where the neural network relies on, in order to make a decision. Third, a model for estimating the importance of the objects in a scene based on a given task is proposed. More specifically, the proposed model estimates the importance of the road users that a driver (or an autonomous vehicle) should pay attention to in a driving scenario in order to have safe navigation. In this scenario, the attention estimation is the final output of the model. Fourth, an attention-based module and a new loss function in a meta-learning based few-shot learning system is proposed in order to incorporate the context of the task into the feature representations of the samples and increasing the few-shot recognition accuracy.In this dissertation, we showed that attention can be multi-facet and studied the attention mechanism from the perspectives of feature selection, reducing the computational cost, interpretable deep learning models, task-driven importance estimation, and context incorporation. Through the study of four scenarios, we further advanced the field of where \u27\u27attention is all you need\u27\u27

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table

    Feature-based Image Comparison and Its Application in Wireless Visual Sensor Networks

    Get PDF
    This dissertation studies the feature-based image comparison method and its application in Wireless Visual Sensor Networks. Wireless Visual Sensor Networks (WVSNs), formed by a large number of low-cost, small-size visual sensor nodes, represent a new trend in surveillance and monitoring practices. Although each single sensor has very limited capability in sensing, processing and transmission, by working together they can achieve various high level tasks. Sensor collaboration is essential to WVSNs and normally performed among sensors having similar measurements, which are called neighbor sensors. The directional sensing characteristics of imagers and the presence of visual occlusion present unique challenges to neighborhood formation, as geographically-close neighbors might not monitor similar scenes. Besides, the energy resource on the WVSNs is also very tight, with wireless communication and complicated computation consuming most energy in WVSNs. Therefore the feature-based image comparison method has been proposed, which directly compares the captured image from each visual sensor in an economical way in terms of both the computational cost and the transmission overhead. The feature-based image comparison method compares different images and aims to find similar image pairs using a set of local features from each image. The image feature is a numerical representation of the raw image and can be more compact in terms of the data volume than the raw image. The feature-based image comparison contains three steps: feature detection, descriptor calculation and feature comparison. For the step of feature detection, the dissertation proposes two computationally efficient corner detectors. The first detector is based on the Discrete Wavelet Transform that provides multi-scale corner point detection and the scale selection is achieved efficiently through a Gaussian convolution approach. The second detector is based on a linear unmixing model, which treats a corner point as the intersection of two or three “line” bases in a 3 by 3 region. The line bases are extracted through a constrained Nonnegative Matrix Factorization (NMF) approach and the corner detection is accomplished through counting the number of contributing bases in the linear mixture. For the step of descriptor calculation, the dissertation proposes an effective dimensionality reduction algorithm for the high dimensional Scale Invariant Feature Transform (SIFT) descriptors. A set of 40 SIFT descriptor bases are extracted through constrained NMF from a large training set and all SIFT descriptors are then projected onto the space spanned by these bases, achieving dimensionality reduction. The efficiency of the proposed corner detectors have been proven through theoretical analysis. In addition, the effectiveness of the proposed corner detectors and the dimensionality reduction approach has been validated through extensive comparison with several state-of-the-art feature detector/descriptor combinations

    Applied Harmonic Analysis and Sparse Approximation

    Get PDF
    Efficiently analyzing functions, in particular multivariate functions, is a key problem in applied mathematics. The area of applied harmonic analysis has a significant impact on this problem by providing methodologies both for theoretical questions and for a wide range of applications in technology and science, such as image processing. Approximation theory, in particular the branch of the theory of sparse approximations, is closely intertwined with this area with a lot of recent exciting developments in the intersection of both. Research topics typically also involve related areas such as convex optimization, probability theory, and Banach space geometry. The workshop was the continuation of a first event in 2012 and intended to bring together world leading experts in these areas, to report on recent developments, and to foster new developments and collaborations
    corecore