759 research outputs found

    Matrix Factorization with Knowledge Graph Propagation for Unsupervised Spoken Language Understanding

    Full text link
    Spoken dialogue systems (SDS) typically require a predefined semantic ontology to train a spoken language understanding (SLU) module. In addition to the anno-tation cost, a key challenge for design-ing such an ontology is to define a coher-ent slot set while considering their com-plex relations. This paper introduces a novel matrix factorization (MF) approach to learn latent feature vectors for utter-ances and semantic elements without the need of corpus annotations. Specifically, our model learns the semantic slots for a domain-specific SDS in an unsupervised fashion, and carries out semantic pars-ing using latent MF techniques. To fur-ther consider the global semantic struc-ture, such as inter-word and inter-slot re-lations, we augment the latent MF-based model with a knowledge graph propaga-tion model based on a slot-based seman-tic graph and a word-based lexical graph. Our experiments show that the proposed MF approaches produce better SLU mod-els that are able to predict semantic slots and word patterns taking into account their relations and domain-specificity in a joint manner.

    Enhancing representation learning with tensor decompositions for knowledge graphs and high dimensional sequence modeling

    Get PDF
    The capability of processing and digesting raw data is one of the key features of a human-like artificial intelligence system. For instance, real-time machine translation should be able to process and understand spoken natural language, and autonomous driving relies on the comprehension of visual inputs. Representation learning is a class of machine learning techniques that autonomously learn to derive latent features from raw data. These new features are expected to represent the data instances in a vector space that facilitates the machine learning task. This thesis studies two specific data situations that require efficient representation learning: knowledge graph data and high dimensional sequences. In the first part of this thesis, we first review multiple relational learning models based on tensor decomposition for knowledge graphs. We point out that relational learning is in fact a means of learning representations through one-hot mapping of entities. Furthermore, we generalize this mapping function to consume a feature vector that encodes all known facts about each entity. It enables the relational model to derive the latent representation instantly for a new entity, without having to re-train the tensor decomposition. In the second part, we focus on learning representations from high dimensional sequential data. Sequential data often pose the challenge that they are of variable lengths. Electronic health records, for instance, could consist of clinical event data that have been collected at subsequent time steps. But each patient may have a medical history of variable length. We apply recurrent neural networks to produce fixed-size latent representations from the raw feature sequences of various lengths. By exposing a prediction model to these learned representations instead of the raw features, we can predict the therapy prescriptions more accurately as a means of clinical decision support. We further propose Tensor-Train recurrent neural networks. We give a detailed introduction to the technique of tensorizing and decomposing large weight matrices into a few smaller tensors. We demonstrate the specific algorithms to perform the forward-pass and the back-propagation in this setting. Then we apply this approach to the input-to-hidden weight matrix in recurrent neural networks. This novel architecture can process extremely high dimensional sequential features such as video data. The model also provides a promising solution to processing sequential features with high sparsity. This is, for instance, the case with electronic health records, since they are often of categorical nature and have to be binary-coded. We incorporate a statistical survival model with this representation learning model, which shows superior prediction quality

    PersoNER: Persian named-entity recognition

    Full text link
    © 1963-2018 ACL. Named-Entity Recognition (NER) is still a challenging task for languages with low digital resources. The main difficulties arise from the scarcity of annotated corpora and the consequent problematic training of an effective NER pipeline. To abridge this gap, in this paper we target the Persian language that is spoken by a population of over a hundred million people world-wide. We first present and provide ArmanPerosNERCorpus, the first manually-annotated Persian NER corpus. Then, we introduce PersoNER, an NER pipeline for Persian that leverages a word embedding and a sequential max-margin classifier. The experimental results show that the proposed approach is capable of achieving interesting MUC7 and CoNNL scores while outperforming two alternatives based on a CRF and a recurrent neural network

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201
    • …
    corecore