12,804 research outputs found

    How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery?

    Full text link
    When the linear measurements of an instance of low-rank matrix recovery satisfy a restricted isometry property (RIP)---i.e. they are approximately norm-preserving---the problem is known to contain no spurious local minima, so exact recovery is guaranteed. In this paper, we show that moderate RIP is not enough to eliminate spurious local minima, so existing results can only hold for near-perfect RIP. In fact, counterexamples are ubiquitous: we prove that every x is the spurious local minimum of a rank-1 instance of matrix recovery that satisfies RIP. One specific counterexample has RIP constant δ=1/2\delta=1/2, but causes randomly initialized stochastic gradient descent (SGD) to fail 12% of the time. SGD is frequently able to avoid and escape spurious local minima, but this empirical result shows that it can occasionally be defeated by their existence. Hence, while exact recovery guarantees will likely require a proof of no spurious local minima, arguments based solely on norm preservation will only be applicable to a narrow set of nearly-isotropic instances.Comment: 32nd Conference on Neural Information Processing Systems (NIPS 2018

    Global Optimality in Low-rank Matrix Optimization

    Full text link
    This paper considers the minimization of a general objective function f(X)f(X) over the set of rectangular n×mn\times m matrices that have rank at most rr. To reduce the computational burden, we factorize the variable XX into a product of two smaller matrices and optimize over these two matrices instead of XX. Despite the resulting nonconvexity, recent studies in matrix completion and sensing have shown that the factored problem has no spurious local minima and obeys the so-called strict saddle property (the function has a directional negative curvature at all critical points but local minima). We analyze the global geometry for a general and yet well-conditioned objective function f(X)f(X) whose restricted strong convexity and restricted strong smoothness constants are comparable. In particular, we show that the reformulated objective function has no spurious local minima and obeys the strict saddle property. These geometric properties imply that a number of iterative optimization algorithms (such as gradient descent) can provably solve the factored problem with global convergence

    On the Landscape of Synchronization Networks: A Perspective from Nonconvex Optimization

    Full text link
    Studying the landscape of nonconvex cost function is key towards a better understanding of optimization algorithms widely used in signal processing, statistics, and machine learning. Meanwhile, the famous Kuramoto model has been an important mathematical model to study the synchronization phenomena of coupled oscillators over various network topologies. In this paper, we bring together these two seemingly unrelated objects by investigating the optimization landscape of a nonlinear function E(θ)=121i,jnaij(1cos(θiθj))E(\boldsymbol{\theta}) = \frac{1}{2}\sum_{1\leq i,j\leq n} a_{ij}(1-\cos(\theta_i - \theta_j)) associated to an underlying network and exploring the relationship between the existence of local minima and network topology. This function arises naturally in Burer-Monteiro method applied to Z2\mathbb{Z}_2 synchronization as well as matrix completion on the torus. Moreover, it corresponds to the energy function of the homogeneous Kuramoto model on complex networks for coupled oscillators. We prove the minimizer of the energy function is unique up to a global translation under deterministic dense graphs and Erd\H{o}s-R\'enyi random graphs with tools from optimization and random matrix theory. Consequently, the stable equilibrium of the corresponding homogeneous Kuramoto model is unique and the basin of attraction for the synchronous state of these coupled oscillators is the whole phase space minus a set of measure zero. In addition, our results address when the Burer-Monteiro method recovers the ground truth exactly from highly incomplete observations in Z2\mathbb{Z}_2 synchronization and shed light on the robustness of nonconvex optimization algorithms against certain types of so-called monotone adversaries. Numerical simulations are performed to illustrate our results.Comment: 27 pages, 6 figure

    Exact Guarantees on the Absence of Spurious Local Minima for Non-negative Rank-1 Robust Principal Component Analysis

    Full text link
    This work is concerned with the non-negative rank-1 robust principal component analysis (RPCA), where the goal is to recover the dominant non-negative principal components of a data matrix precisely, where a number of measurements could be grossly corrupted with sparse and arbitrary large noise. Most of the known techniques for solving the RPCA rely on convex relaxation methods by lifting the problem to a higher dimension, which significantly increase the number of variables. As an alternative, the well-known Burer-Monteiro approach can be used to cast the RPCA as a non-convex and non-smooth 1\ell_1 optimization problem with a significantly smaller number of variables. In this work, we show that the low-dimensional formulation of the symmetric and asymmetric positive rank-1 RPCA based on the Burer-Monteiro approach has benign landscape, i.e., 1) it does not have any spurious local solution, 2) has a unique global solution, and 3) its unique global solution coincides with the true components. An implication of this result is that simple local search algorithms are guaranteed to achieve a zero global optimality gap when directly applied to the low-dimensional formulation. Furthermore, we provide strong deterministic and probabilistic guarantees for the exact recovery of the true principal components. In particular, it is shown that a constant fraction of the measurements could be grossly corrupted and yet they would not create any spurious local solution

    A theory on the absence of spurious solutions for nonconvex and nonsmooth optimization

    Full text link
    We study the set of continuous functions that admit no spurious local optima (i.e. local minima that are not global minima) which we term \textit{global functions}. They satisfy various powerful properties for analyzing nonconvex and nonsmooth optimization problems. For instance, they satisfy a theorem akin to the fundamental uniform limit theorem in the analysis regarding continuous functions. Global functions are also endowed with useful properties regarding the composition of functions and change of variables. Using these new results, we show that a class of nonconvex and nonsmooth optimization problems arising in tensor decomposition applications are global functions. This is the first result concerning nonconvex methods for nonsmooth objective functions. Our result provides a theoretical guarantee for the widely-used 1\ell_1 norm to avoid outliers in nonconvex optimization.Comment: 22 pages, 13 figure

    Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA

    Full text link
    This work studies low-rank approximation of a positive semidefinite matrix from partial entries via nonconvex optimization. We characterized how well local-minimum based low-rank factorization approximates a fixed positive semidefinite matrix without any assumptions on the rank-matching, the condition number or eigenspace incoherence parameter. Furthermore, under certain assumptions on rank-matching and well-boundedness of condition numbers and eigenspace incoherence parameters, a corollary of our main theorem improves the state-of-the-art sampling rate results for nonconvex matrix completion with no spurious local minima in Ge et al. [2016, 2017]. In addition, we investigated when the proposed nonconvex optimization results in accurate low-rank approximations even in presence of large condition numbers, large incoherence parameters, or rank mismatching. We also propose to apply the nonconvex optimization to memory-efficient Kernel PCA. Compared to the well-known Nystr\"{o}m methods, numerical experiments indicate that the proposed nonconvex optimization approach yields more stable results in both low-rank approximation and clustering.Comment: Main theorem improve

    Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview

    Full text link
    Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.Comment: Invited overview articl

    No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis

    Full text link
    In this paper we develop a new framework that captures the common landscape underlying the common non-convex low-rank matrix problems including matrix sensing, matrix completion and robust PCA. In particular, we show for all above problems (including asymmetric cases): 1) all local minima are also globally optimal; 2) no high-order saddle points exists. These results explain why simple algorithms such as stochastic gradient descent have global converge, and efficiently optimize these non-convex objective functions in practice. Our framework connects and simplifies the existing analyses on optimization landscapes for matrix sensing and symmetric matrix completion. The framework naturally leads to new results for asymmetric matrix completion and robust PCA

    An equivalence between stationary points for rank constraints versus low-rank factorizations

    Full text link
    Two common approaches in low-rank optimization problems are either working directly with a rank constraint on the matrix variable, or optimizing over a low-rank factorization so that the rank constraint is implicitly ensured. In this paper, we study the natural connection between the rank-constrained and factorized approaches. We show that all second-order stationary points of the factorized objective function correspond to stationary points of projected gradient descent run on the original problem (where the projection step enforces the rank constraint). This result allows us to unify many existing optimization guarantees that have been proved specifically in either the rank-constrained or the factorized setting, and leads to new results for certain settings of the problem

    Spurious Local Minima are Common in Two-Layer ReLU Neural Networks

    Full text link
    We consider the optimization problem associated with training simple ReLU neural networks of the form xi=1kmax{0,wix}\mathbf{x}\mapsto \sum_{i=1}^{k}\max\{0,\mathbf{w}_i^\top \mathbf{x}\} with respect to the squared loss. We provide a computer-assisted proof that even if the input distribution is standard Gaussian, even if the dimension is arbitrarily large, and even if the target values are generated by such a network, with orthonormal parameter vectors, the problem can still have spurious local minima once 6k206\le k\le 20. By a concentration of measure argument, this implies that in high input dimensions, \emph{nearly all} target networks of the relevant sizes lead to spurious local minima. Moreover, we conduct experiments which show that the probability of hitting such local minima is quite high, and increasing with the network size. On the positive side, mild over-parameterization appears to drastically reduce such local minima, indicating that an over-parameterization assumption is necessary to get a positive result in this setting
    corecore