2,318 research outputs found

    On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry

    Full text link
    We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking constraints. We end with the first experimental study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark problems.Comment: To appear in the Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP 2010

    Number of right ideals and a qq-analogue of indecomposable permutations

    Full text link
    We prove that the number of right ideals of codimension nn in the algebra of noncommutative Laurent polynomials in two variables over the finite field F_q\mathbb F\_q is equal to (q−1)n+1q(n+1)(n−2)2∑_θqinv(θ)(q-1)^{n+1} q^{\frac{(n+1)(n-2)}{2}}\sum\_\theta q^{inv(\theta)}, where the sum is over all indecomposable permutations in S_n+1S\_{n+1} and where inv(θ)inv(\theta)stands for the number of inversions of θ\theta.Comment: submitte

    Isomorphism of graph classes related to the circular-ones property

    Get PDF
    We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and convex-round graphs.Comment: 25 pages, 9 figure
    • …
    corecore