16,344 research outputs found

    Estimation of muscular forces from SSA smoothed sEMG signals calibrated by inverse dynamics-based physiological static optimization

    Get PDF
    The estimation of muscular forces is useful in several areas such as biomedical or rehabilitation engineering. As muscular forces cannot be measured in vivo non-invasively they must be estimated by using indirect measurements such as surface electromyography (sEMG) signals or by means of inverse dynamic (ID) analyses. This paper proposes an approach to estimate muscular forces based on both of them. The main idea is to tune a gain matrix so as to compute muscular forces from sEMG signals. To do so, a curve fitting process based on least-squares is carried out. The input is the sEMG signal filtered using singular spectrum analysis technique. The output corresponds to the muscular force estimated by the ID analysis of the recorded task, a dumbbell weightlifting. Once the model parameters are tuned, it is possible to obtain an estimation of muscular forces based on sEMG signal. This procedure might be used to predict muscular forces in vivo outside the space limitations of the gait analysis laboratory.Postprint (published version

    Measures of Analysis of Time Series (MATS): A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases

    Get PDF
    In many applications, such as physiology and finance, large time series data bases are to be analyzed requiring the computation of linear, nonlinear and other measures. Such measures have been developed and implemented in commercial and freeware softwares rather selectively and independently. The Measures of Analysis of Time Series ({\tt MATS}) {\tt MATLAB} toolkit is designed to handle an arbitrary large set of scalar time series and compute a large variety of measures on them, allowing for the specification of varying measure parameters as well. The variety of options with added facilities for visualization of the results support different settings of time series analysis, such as the detection of dynamics changes in long data records, resampling (surrogate or bootstrap) tests for independence and linearity with various test statistics, and discrimination power of different measures and for different combinations of their parameters. The basic features of {\tt MATS} are presented and the implemented measures are briefly described. The usefulness of {\tt MATS} is illustrated on some empirical examples along with screenshots.Comment: 25 pages, 9 figures, two tables, the software can be downloaded at http://eeganalysis.web.auth.gr/indexen.ht

    Measures of Analysis of Time Series (MATS): A MATLAB Toolkit for Computation of Multiple Measures on Time Series Data Bases

    Get PDF
    In many applications, such as physiology and finance, large time series data bases are to be analyzed requiring the computation of linear, nonlinear and other measures. Such measures have been developed and implemented in commercial and freeware softwares rather selectively and independently. The Measures of Analysis of Time Series (MATS) MATLAB toolkit is designed to handle an arbitrary large set of scalar time series and compute a large variety of measures on them, allowing for the specification of varying measure parameters as well. The variety of options with added facilities for visualization of the results support different settings of time series analysis, such as the detection of dynamics changes in long data records, resampling (surrogate or bootstrap) tests for independence and linearity with various test statistics, and discrimination power of different measures and for different combinations of their parameters. The basic features of MATS are presented and the implemented measures are briefly described. The usefulness of MATS is illustrated on some empirical examples along with screenshots.

    A reversal coarse-grained analysis with application to an altered functional circuit in depression

    Get PDF
    Introduction: When studying brain function using functional magnetic resonance imaging (fMRI) data containing tens of thousands of voxels, a coarse-grained approach – dividing the whole brain into regions of interest – is applied frequently to investigate the organization of the functional network on a relatively coarse scale. However, a coarse-grained scheme may average out the fine details over small spatial scales, thus rendering it difficult to identify the exact locations of functional abnormalities. Methods: A novel and general approach to reverse the coarse-grained approach by locating the exact sources of the functional abnormalities is proposed. Results: Thirty-nine patients with major depressive disorder (MDD) and 37 matched healthy controls are studied. A circuit comprising the left superior frontal gyrus (SFGdor), right insula (INS), and right putamen (PUT) exhibit the greatest changes between the patients with MDD and controls. A reversal coarse-grained analysis is applied to this circuit to determine the exact location of functional abnormalities. Conclusions: The voxel-wise time series extracted from the reversal coarse-grained analysis (source) had several advantages over the original coarse-grained approach: (1) presence of a larger and detectable amplitude of fluctuations, which indicates that neuronal activities in the source are more synchronized; (2) identification of more significant differences between patients and controls in terms of the functional connectivity associated with the sources; and (3) marked improvement in performing discrimination tasks. A software package for pattern classification between controls and patients is available in Supporting Information

    A simple method for detecting chaos in nature

    Full text link
    Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature. Moreover, chaos is predicted to play diverse functional roles in living systems. A method for detecting chaos from empirical measurements should therefore be a key component of the biologist's toolkit. But, classic chaos-detection tools are highly sensitive to measurement noise and break down for common edge cases, making it difficult to detect chaos in domains, like biology, where measurements are noisy. However, newer tools promise to overcome these limitations. Here, we combine several such tools into an automated processing pipeline, and show that our pipeline can detect the presence (or absence) of chaos in noisy recordings, even for difficult edge cases. As a first-pass application of our pipeline, we show that heart rate variability is not chaotic as some have proposed, and instead reflects a stochastic process in both health and disease. Our tool is easy-to-use and freely available

    Experimental Design Modulates Variance in BOLD Activation: The Variance Design General Linear Model

    Full text link
    Typical fMRI studies have focused on either the mean trend in the blood-oxygen-level-dependent (BOLD) time course or functional connectivity (FC). However, other statistics of the neuroimaging data may contain important information. Despite studies showing links between the variance in the BOLD time series (BV) and age and cognitive performance, a formal framework for testing these effects has not yet been developed. We introduce the Variance Design General Linear Model (VDGLM), a novel framework that facilitates the detection of variance effects. We designed the framework for general use in any fMRI study by modeling both mean and variance in BOLD activation as a function of experimental design. The flexibility of this approach allows the VDGLM to i) simultaneously make inferences about a mean or variance effect while controlling for the other and ii) test for variance effects that could be associated with multiple conditions and/or noise regressors. We demonstrate the use of the VDGLM in a working memory application and show that engagement in a working memory task is associated with whole-brain decreases in BOLD variance.Comment: 18 pages, 7 figure

    Mapping the epileptic brain with EEG dynamical connectivity: established methods and novel approaches

    Get PDF
    Several algorithms rooted in statistical physics, mathematics and machine learning are used to analyze neuroimaging data from patients suffering from epilepsy, with the main goals of localizing the brain region where the seizure originates from and of detecting upcoming seizure activity in order to trigger therapeutic neurostimulation devices. Some of these methods explore the dynamical connections between brain regions, exploiting the high temporal resolution of the electroencephalographic signals recorded at the scalp or directly from the cortical surface or in deeper brain areas. In this paper we describe this specific class of algorithms and their clinical application, by reviewing the state of the art and reporting their application on EEG data from an epileptic patient

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1
    corecore