285,119 research outputs found

    *-exponential of slice-regular functions

    Get PDF
    According to [5] we define the *-exponential of a slice-regular function, which can be seen as a generalization of the complex exponential to quaternions. Explicit formulas for exp(f)\exp_*(f) are provided, also in terms of suitable sine and cosine functions. We completely classify under which conditions the *-exponential of a function is either slice-preserving or CJ\mathbb{C}_J-preserving for some JSJ\in\mathbb{S} and show that exp(f)\exp_*(f) is never-vanishing. Sharp necessary and sufficient conditions are given in order that exp(f+g)=exp(f)exp(g)\exp_*(f+g)=\exp_*(f)*\exp_*(g), finding an exceptional and unexpected case in which equality holds even if ff and gg do not commute. We also discuss the existence of a square root of a slice-preserving regular function, characterizing slice-preserving functions (defined on the circularization of simply connected domains) which admit square roots. Square roots of this kind of functions are used to provide a further formula for exp(f)\exp_{*}(f). A number of examples is given throughout the paper.Comment: 15 pages; to appear in Proceedings of the American Mathematical Societ

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new Chebyshev¿Halley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for ¿ = 2,which corresponds to an optimal method in the sense of Kung and Traub¿s conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274Gutiérrez, J. M., & Hernández, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., Gutiérrez, J. M., Hernández, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., Hernández, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Determination of multiple roots of nonlinear equations and applications

    Full text link
    The final publication is available at Springer via https://dx.doi.org/10.1007/s10910-014-0460-8[EN] In this work we focus on the problem of approximating multiple roots of nonlinear equations. Multiple roots appear in some applications such as the compression of band-limited signals and the multipactor effect in electronic devices. We present a new family of iterative methods for multiple roots whose multiplicity is known. The methods are optimal in Kung-Traub's sense (Kung and Traub in J Assoc Comput Mach 21:643-651, [1]), because only three functional values per iteration are computed. By adding just one more function evaluation we make this family derivative free while preserving the convergence order. To check the theoretical results, we codify the new algorithms and apply them to different numerical examples.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and by Vicerrectorado de Investigacion, Universitat Politecnica de Valencia PAID-SP-2012-0474.Hueso Pagoaga, JL.; Martínez Molada, E.; Teruel Ferragud, C. (2015). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry. 53(3):880-892. https://doi.org/10.1007/s10910-014-0460-8S880892533H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)W. Bi, H. Ren, Q. Wu, Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 255, 105–112 (2009)W. Bi, Q. Wu, H. Ren, A new family of eighth-order iterative methods for solving nonlinear equations. Appl. Math. Comput. 214, 236–245 (2009)A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, New modifications of Potra-Pták’s method with optimal fourth and eighth order of convergence. J. Comput. Appl. Math. 234, 2969–2976 (2010)E. Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 2, 317–365 (1870)C. Chun, B. Neta, A third-order modification of Newtons method for multiple roots. Appl. Math. Comput. 211, 474–479 (2009)Y.I. Kim, S.D. Lee, A third-order variant of NewtonSecant method finding a multiple zero. J. Chungcheong Math. Soc. 23(4), 845–852 (2010)B. Neta, Extension of Murakamis high-order nonlinear solver to multiple roots. Int. J. Comput. Math. 8, 1023–1031 (2010)H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput. 209, 206–210 (2009)Q. Zheng, J. Wang, P. Zhao, L. Zhang, A Steffensen-like method and its higher-order variants. Appl. Math. Comput. 214, 10–16 (2009)S. Amat, S. Busquier, On a Steffensen’s type method and its behavior for semismooth equations. Appl. Math. Comput. 177, 819–823 (2006)X. Feng, Y. He, High order iterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 186, 1617–1623 (2007)A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. doi: 10.1016/j.amc.2011.02.067F. Marvasti, A. Jain, Zero crossings, bandwidth compression, and restoration of nonlinearly distorted band-limited signals. J. Opt. Soc. Am. A 3, 651–654 (1986)S. Anza, C. Vicente, B. Gimeno, V.E. Boria, J. Armendáriz, Long-term multipactor discharge in multicarrier systems. Physics of Plasmas 14(8), 082–112 (2007)J.L. Hueso, E. Martínez, C. Teruel, New families of iterative methods with fourth and sixth order of convergence and their dynamics, in Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2013, 24–27 June 2013A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. doi: 10.10016/j.cam.2014.01.024 (2014)J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010

    Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters

    Full text link
    [EN] In this paper, we propose a family of optimal eighth order convergent iterative methods for multiple roots with known multiplicity with the introduction of two free parameters and three univariate weight functions. Also numerical experiments have applied to a number of academical test functions and chemical problems for different special schemes from this family that satisfies the conditions given in convergence result.This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C02-2-P and Generalitat Valenciana PROMETEO/2016/089.Zafar, F.; Cordero Barbero, A.; Quratulain, R.; Torregrosa Sánchez, JR. (2018). Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry. 56(7):1884-1901. https://doi.org/10.1007/s10910-017-0813-1S18841901567R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, On developing fourth-order optimal families of methods for multiple roots and their dynamics. Appl. Math. Comput. 265(15), 520–532 (2015)R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, V. Kanwar, An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algor. 71(4), 775–796 (2016)R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa, An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algor. (2017). doi: 10.1007/s11075-017-0361-6F.I. Chicharro, A. Cordero, J. R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. ID 780153 (2013)A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications (Prentice Hall PTR, New Jersey, 1999)J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, 1972)Y.H. Geum, Y.I. Kim, B. Neta, A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Appl. Math. Comput. 270, 387–400 (2015)Y.H. Geum, Y.I. Kim, B. Neta, A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Appl. Math. Comput. 283, 120–140 (2016)J.L. Hueso, E. Martınez, C. Teruel, Determination of multiple roots of nonlinear equations and applications. J. Math. Chem. 53, 880–892 (2015)L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001)S. Li, X. Liao, L. Cheng, A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)S.G. Li, L.Z. Cheng, B. Neta, Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)B. Liu, X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations. Nonlinear Anal. Model. Control 18(2), 143–152 (2013)M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986)M. Sharifi, D.K.R. Babajee, F. Soleymani, Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)J.R. Sharma, R. Sharma, Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)F. Soleymani, D.K.R. Babajee, T. Lofti, On a numerical technique forfinding multiple zeros and its dynamic. J. Egypt. Math. Soc. 21, 346–353 (2013)F. Soleymani, D.K.R. Babajee, Computing multiple zeros using a class of quartically convergent methods. Alex. Eng. J. 52, 531–541 (2013)R. Thukral, A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots. J. Numer. Math. Stoch. 6(1), 37–44 (2014)R. Thukral, Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations. J. Math. Article ID 404635 (2013)X. Zhou, X. Chen, Y. Song, Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)X. Zhou, X. Chen, Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations. Appl. Math. Comput. 219, 6030–6038 (2013

    An elliptic current operator for the 8 vertex model

    Full text link
    We compute the operator which creates the missing degenerate states in the algebraic Bethe ansatz of the 8 vertex model at roots of unity and relate it to the concept of an elliptic current operator. We find that in sharp contrast with the corresponding formalism in the six-vertex model at roots of unity the current operator is not nilpotent with the consequence that in the construction of degenerate eigenstates of the transfer matrix an arbitrary number of exact strings can be added to the set of regular Bethe roots. Thus the original set of free parameters {s,t} of an eigenvector of T is enlarged to become {s,t,\lambda_{c,1}, ..., \lambda_{c,n}\} with arbitrary string centers \lambda_{c,j} and arbitrary n.Comment: 16 pages, Latex typographic errors corrected, text added, reference added, accepted by Journal of Physics A,Mathematical and Genera

    Stability analysis of fourth-order iterative method for finding multiple roots of nonlinear equations

    Full text link
    [EN] The use of complex dynamics tools in order to deepen the knowledge of qualitative behaviour of iterative methods for solving non-linear equations is a growing area of research in the last few years with fruitful results. Most of the studies dealt with the analysis of iterative schemes for solving non-linear equations with simple roots; however, the case involving multiple roots remains almost unexplored. The main objective of this paper was to discuss the dynamical analysis of the rational map associated with an existing class of iterative procedures for multiple roots. This study was performed for cases of double and triple multiplicities, giving as a conjecture that the wideness of the convergence regions of the multiple roots increases when the multiplicity is higher and also that this family of parametric methods includes some specially fast and stable elements with global convergence.This research was partially supported by Ministerio de Ciencia, Innovación y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089Cordero Barbero, A.; Jaiswal, J.; Torregrosa Sánchez, JR. (2019). Stability analysis of fourth-order iterative method for finding multiple roots of nonlinear equations. Applied Mathematics and Nonlinear Sciences. 4(1):43-56. https://doi.org/10.2478/AMNS.2019.1.00005S435641Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.32186

    How dualists should (Not) respond to the objection from energy conservation

    Get PDF
    The principle of energy conservation is widely taken to be a serious difficulty for interactionist dualism (whether property or substance). Interactionists often have therefore tried to make it satisfy energy conservation. This paper examines several such attempts, especially including E. J. Lowe's varying constants proposal, showing how they all miss their goal due to lack of engagement with the physico-mathematical roots of energy conservation physics: the first Noether theorem (that symmetries imply conservation laws), its converse (that conservation laws imply symmetries), and the locality of continuum/field physics. Thus the "conditionality response", which sees conservation as (bi)conditional upon symmetries and simply accepts energy non-conservation as an aspect of interactionist dualism, is seen to be, perhaps surprisingly, the one most in accord with contemporary physics (apart from quantum mechanics) by not conflicting with mathematical theorems basic to physics. A decent objection to interactionism should be a posteriori, based on empirically studying the brain.John Templeton Foundation grant #59226 (A.C. C.) and #60745 (J. B. P.

    Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence

    Full text link
    [EN] The main contribution of this study is to present a new optimal eighth-order scheme for locating zeros with multiplicity m > 1. An extensive convergence analysis is presented with the main theorem in order to demonstrate the optimal eighth-order convergence of the proposed scheme. Moreover, a local convergence study for the optimal fourth-order method defined by the first two steps of the new method is presented, allowing us to obtain the radius of the local convergence ball. Finally, numerical tests on some real-life problems, such as a Van der Waals equation of state, a conversion Chemical engineering problem and two standard academic test problems are presented, which confirm the theoretical results established in this paper and the efficiency of this proposed iterative method. We observed from the numerical experiments that our proposed iterative methods have good values for convergence radii. Further, they have not only faster convergence towards the desired zero of the involved function but they also have both smaller residual error and a smaller difference between two consecutive iterations than current existing techniques.This research was partially supported by Ministerio de Economia y Competitividad under grant MTM2014-52016-C2-2-P and by the project of Generalitat Valenciana Prometeo/2016/089.Behl, R.; Martínez Molada, E.; Cevallos-Alarcon, FA.; Alshomrani, AS. (2019). Local convergence balls for nonlinear problems with multiplicity and their extension to eight-order of convergence. Mathematical Problems in Engineering. 2019:1-18. https://doi.org/10.1155/2019/1427809S1182019Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2013). Basic concepts. Multipoint Methods, 1-26. doi:10.1016/b978-0-12-397013-8.00001-7Shengguo, L., Xiangke, L., & Lizhi, C. (2009). A new fourth-order iterative method for finding multiple roots of nonlinear equations. Applied Mathematics and Computation, 215(3), 1288-1292. doi:10.1016/j.amc.2009.06.065Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Li, S. G., Cheng, L. Z., & Neta, B. (2010). Some fourth-order nonlinear solvers with closed formulae for multiple roots. Computers & Mathematics with Applications, 59(1), 126-135. doi:10.1016/j.camwa.2009.08.066Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Sharifi, M., Babajee, D. K. R., & Soleymani, F. (2012). Finding the solution of nonlinear equations by a class of optimal methods. Computers & Mathematics with Applications, 63(4), 764-774. doi:10.1016/j.camwa.2011.11.040Soleymani, F., & Babajee, D. K. R. (2013). Computing multiple zeros using a class of quartically convergent methods. Alexandria Engineering Journal, 52(3), 531-541. doi:10.1016/j.aej.2013.05.001Soleymani, F., Babajee, D. K. R., & Lotfi, T. (2013). On a numerical technique for finding multiple zeros and its dynamic. Journal of the Egyptian Mathematical Society, 21(3), 346-353. doi:10.1016/j.joems.2013.03.011Zhou, X., Chen, X., & Song, Y. (2013). Families of third and fourth order methods for multiple roots of nonlinear equations. Applied Mathematics and Computation, 219(11), 6030-6038. doi:10.1016/j.amc.2012.12.041Hueso, J. L., Martínez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Zafar, F., Cordero, A., Quratulain, R., & Torregrosa, J. R. (2017). Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry, 56(7), 1884-1901. doi:10.1007/s10910-017-0813-1Geum, Y. H., Kim, Y. I., & Neta, B. (2018). Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points. Journal of Computational and Applied Mathematics, 333, 131-156. doi:10.1016/j.cam.2017.10.033Geum, Y. H., Kim, Y. I., & Magreñán, Á. A. (2018). A study of dynamics via Möbius conjugacy map on a family of sixth-order modified Newton-like multiple-zero finders with bivariate polynomial weight functions. Journal of Computational and Applied Mathematics, 344, 608-623. doi:10.1016/j.cam.2018.06.006Chun, C., & Neta, B. (2015). An analysis of a family of Maheshwari-based optimal eighth order methods. Applied Mathematics and Computation, 253, 294-307. doi:10.1016/j.amc.2014.12.064Thukral, R. (2013). Introduction to Higher-Order Iterative Methods for Finding Multiple Roots of Nonlinear Equations. Journal of Mathematics, 2013, 1-3. doi:10.1155/2013/404635Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Argyros, I. (2003). On The Convergence And Application Of Newton’s Method Under Weak HÖlder Continuity Assumptions. International Journal of Computer Mathematics, 80(6), 767-780. doi:10.1080/0020716021000059160Zhou, X., Chen, X., & Song, Y. (2013). On the convergence radius of the modified Newton method for multiple roots under the center–Hölder condition. Numerical Algorithms, 65(2), 221-232. doi:10.1007/s11075-013-9702-2Bi, W., Ren, H., & Wu, Q. (2011). Convergence of the modified Halley’s method for multiple zeros under Hölder continuous derivative. Numerical Algorithms, 58(4), 497-512. doi:10.1007/s11075-011-9466-5Zhou, X., & Song, Y. (2014). Convergence radius of Osada’s method under center-Hölder continuous condition. Applied Mathematics and Computation, 243, 809-816. doi:10.1016/j.amc.2014.06.068Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Balaji, G. V., & Seader, J. D. (1995). Application of interval Newton’s method to chemical engineering problems. Reliable Computing, 1(3), 215-223. doi:10.1007/bf02385253Shacham, M. (1989). An improved memory method for the solution of a nonlinear equation. Chemical Engineering Science, 44(7), 1495-1501. doi:10.1016/0009-2509(89)80026-

    The life and mathematics of George Campbell, F.R.S.

    Get PDF
    AbstractLittle is known of George Campbell except for his 1728 paper on “impossible” roots of requations, which preceded one by Colin Maclaurin on the same subject. Maclaurin privately accused Campbell of plagiarism, which soon thereafter led to a public priority dispute. This paper discusses two mathematical works by Campbell which have not been previously reported: a manuscript volume of lecture notes, apparently from a time when he was a private tutor at the University of Edinburgh, and a published paper in which he produced a new result regarding complex roots of equations almost thirty years before its apparent rediscovery by Edward Waring. The biographical gleanings of S. Mills (Archive for History of Exact Sciences 28, 149–164 (1983)) R. V. Wallis and P. J. Wallis, Biobibliography of British Mathematics and Its Applications, Part II: 1701–1760, Newcastle-upon-Tyne, 1986), are also supplemented with a modest amount of new material, including a letter to the Duke of Newcastle, dated 1754, and some genealogical data which identify some probable family connections, although his date and place of birth remain uncertain
    corecore