21,869 research outputs found

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation called SDCP that is based on segment-level consideration sets, we add a class of constraints called product constraints (σPC), that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ESDCPκ, and compare the performance of both methods on the benchmark data sets in the literature. In our computational testing on the benchmark data sets in the literature, 2PC achieves the CDLP value at a fraction of the CPU time taken by column generation. For a large network our 2PC procedure runs under 70 seconds to come within 0.02% of the CDLP value, while column generation takes around 1 hour; for an even larger network with 68 legs, column generation does not converge even in 10 hours for most of the scenarios while 2PC runs under 9 minutes. Thus we believe our approach is very promising for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small

    An enhanced concave program relaxation for choice network revenue management

    Get PDF
    The network choice revenue management problem models customers as choosing from an offer-set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation based on segment-level consideration sets called SDCP, we add a class of constraints called product constraints, that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methods on the benchmark data sets in the literature. Both the product constraints and the ?SDCP method are very simple and easy to implement and are applicable to the case of overlapping segment consideration sets. In our computational testing on the benchmark data sets in the literature, SDCP with product constraints achieves the CDLP value at a fraction of the CPU time taken by column generation and we believe is a very promising approach for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small.discrete-choice models, network revenue management, optimization

    Achieving an optimal trade-off between revenue and energy peak within a smart grid environment

    Get PDF
    We consider an energy provider whose goal is to simultaneously set revenue-maximizing prices and meet a peak load constraint. In our bilevel setting, the provider acts as a leader (upper level) that takes into account a smart grid (lower level) that minimizes the sum of users' disutilities. The latter bases its decisions on the hourly prices set by the leader, as well as the schedule preferences set by the users for each task. Considering both the monopolistic and competitive situations, we illustrate numerically the validity of the approach, which achieves an 'optimal' trade-off between three objectives: revenue, user cost, and peak demand

    A randomized concave programming method for choice network revenue management

    Get PDF
    Models incorporating more realistic models of customer behavior, as customers choosing from an offer set, have recently become popular in assortment optimization and revenue management. The dynamic program for these models is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper we propose a new approach called SDCP to solving CDLP based on segments and their consideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound on the dynamic program but coincides with CDLP for the case of non-overlapping segments. If the number of elements in a consideration set for a segment is not very large (SDCP) can be applied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by (i) simulations, called the randomized concave programming (RCP) method, and (ii) by adding cuts to a recent compact formulation of the problem for a latent multinomial-choice model of demand (SBLP+). This latter approach turns out to be very effective, essentially obtaining CDLP value, and excellent revenue performance in simulations, even for overlapping segments. By formulating the problem as a separation problem, we give insight into why CDLP is easy for the MNL with non-overlapping considerations sets and why generalizations of MNL pose difficulties. We perform numerical simulations to determine the revenue performance of all the methods on reference data sets in the literature.assortment optimization, randomized algorithms, network revenue management.

    Static Pricing Problems under Mixed Multinomial Logit Demand

    Full text link
    Price differentiation is a common strategy for many transport operators. In this paper, we study a static multiproduct price optimization problem with demand given by a continuous mixed multinomial logit model. To solve this new problem, we design an efficient iterative optimization algorithm that asymptotically converges to the optimal solution. To this end, a linear optimization (LO) problem is formulated, based on the trust-region approach, to find a "good" feasible solution and approximate the problem from below. Another LO problem is designed using piecewise linear relaxations to approximate the optimization problem from above. Then, we develop a new branching method to tighten the optimality gap. Numerical experiments show the effectiveness of our method on a published, non-trivial, parking choice model

    Gradient-Bounded Dynamic Programming with Submodular and Concave Extensible Value Functions

    Full text link
    We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodular in its state-space, we present a new algorithm that computes deterministic upper and stochastic lower bounds of the value function similar to dual dynamic programming. We then show that the proposed algorithm terminates after a finite number of iterations. Finally, we demonstrate the efficacy of our approach on a high-dimensional numerical example from delivery slot pricing in attended home delivery.Comment: 6 pages, 2 figures, accepted for IFAC World Congress 202

    Direct Mailing Decisions for a Dutch Fundraiser

    Get PDF
    Direct marketing firms want to transfer their message as efficientlyas possible in order to obtain a profitable long-term relationshipwith individual customers. Much attention has been paid to addressselection of existing customers and on identifying new profitableprospects. Less attention has been paid to the optimal frequency ofthe contacts with customers. We provide a decision support system thathelps the direct mailer to determine mailing frequency for activecustomers. The system observes the mailing pattern of these customersin terms of the well known R(ecency), F(requency) and M(onetary)variables. The underlying model is based on an optimization model forthe frequency of direct mailings. The system provides the directmailer with tools to define preferred response behavior and advisesthe direct mailer on the mailing strategy that will steer thecustomers towards this preferred response behavior.decision support system;direct marketing;Markov decision process
    • …
    corecore