1,280 research outputs found

    Governing equations of tissue modelling and remodelling: A unified generalised description of surface and bulk balance

    Get PDF
    Several biological tissues undergo changes in their geometry and in their bulk material properties by modelling and remodelling processes. Modelling synthesises tissue in some regions and removes tissue in others. Remodelling overwrites old tissue material properties with newly formed, immature tissue properties. As a result, tissues are made up of different "patches", i.e., adjacent tissue regions of different ages and different material properties, within evolving boundaries. In this paper, generalised equations governing the spatio-temporal evolution of such tissues are developed within the continuum model. These equations take into account nonconservative, discontinuous surface mass balance due to creation and destruction of material at moving interfaces, and bulk balance due to tissue maturation. These equations make it possible to model patchy tissue states and their evolution without explicitly maintaining a record of when/where resorption and formation processes occurred. The time evolution of spatially averaged tissue properties is derived systematically by integration. These spatially-averaged equations cannot be written in closed form as they retain traces that tissue destruction is localised at tissue boundaries. The formalism developed in this paper is applied to bone tissues, which exhibit strong material heterogeneities due to their slow mineralisation and remodelling processes. Evolution equations are proposed in particular for osteocyte density and bone mineral density. Effective average equations for bone mineral density (BMD) and tissue mineral density (TMD) are derived using a mean-field approximation. The error made by this approximation when remodelling patchy tissue is investigated. The specific time signatures of BMD or TMD during remodelling events may provide a way to detect these events occurring at lower, unseen spatial resolutions from microCT scans.Comment: 14 pages, 8 figures. V2: minor stylistic changes, more detailed derivation of Eqs (30)-(31), additional comments on implication of BMD and TMD signatures for microCT scan

    Artificial neural network analysis of bone quality DXA parameters response to teriparatide in fractured osteoporotic patients

    Get PDF
    Teriparatide is a bone-forming therapy for osteoporosis that increases bone quantity and texture, with uncertain action on bone geometry. No data are available regarding its influence on bone strain. To investigate teriparatide action on parameters of bone quantity and quality and on Bone Strain Index (BSI), also derived from DXA lumbar scan, based on the mathematical model finite element method. Forty osteoporotic patients with fractures were studied before and after two years of daily subcutaneous 20 mcg of teriparatide with dual X-ray photon absorptiometry to assess bone mineral density (BMD), hip structural analysis (HSA), trabecular bone score (TBS), BSI. Spine deformity index (SDI) was calculated from spine X-ray. Shapiro-Wilks, Wilcoxon and Student's t test were used for classical statistical analysis. Auto Contractive Map was used for Artificial Neural Network Analysis (ANNs). In the entire population, the ameliorations after therapy regarded BSI (-13.9%), TBS (5.08%), BMD (8.36%). HSA parameters of femoral shaft showed a worsening. Dividing patients into responders (BMD increase >10%) and non-responders, the first presented TBS and BSI ameliorations (11.87% and -25.46%, respectively). Non-responders presented an amelioration of BSI only, but less than in the other subgroup (-6.57%). ANNs maps reflect the mentioned bone quality improvements. Teriparatide appears to ameliorate not only BMD and TBS, but also BSI, suggesting an increase of bone strength that may explain the known reduction in fracture risk, not simply justified by BMD increase. BSI appears to be a sensitive index of TPD effect. ANNs appears to be a valid tool to investigate complex clinical systems

    In silico methods to evaluate Fracture Risk and Bone Mineral Density changes in patients undergoing Total Hip Replacement

    Get PDF
    La sostituzione totale d’anca è uno degli interventi chirurgici con le più alte percentuali di successo. Esistono due varianti di protesi d’anca che differiscono in base al metodo di ancoraggio all’osso: cementate (fissaggio tramite cemento osseo) e non cementate (fissaggio tramite forzamento). Ad oggi, i chirurghi non hanno indicazioni quantitative di supporto per la scelta fra le due tipologie di impianto, decidendo solo in base alla loro esperienza. Due delle problematiche che interessano le protesi non cementate sono la possibilità di frattura intra-operatoria durante l’inserimento forzato e il riassorbimento osseo nel periodo di tempo successivo all’intervento. A partire da rilevazioni densitometriche effettuate su immagini da TC di pazienti sottoposti a protesi d’anca non cementata, sono stati sviluppati due metodi: 1) per la valutazione del rischio di frattura intra-operatorio tramite analisi agli elementi finiti; 2) per la valutazione della variazione di densità minerale ossea (tridimensionalmente attorno alla protesi) dopo un anno dall’operazione. Un campione di 5 pazienti è stato selezionato per testare le procedure. Ciascuno dei pazienti è stato scansionato tramite TC in tre momenti differenti: una acquisita prima dell’operazione (pre-op), le altre due acquisite 24 ore (post 24h) e 1 anno dopo l’operazione (post 1y). I risultati ottenuti hanno confermato la fattibilità di entrambi i metodi, riuscendo inoltre a distinguere e a quantificare delle differenze fra i vari pazienti. La fattibilità di entrambe le metodologie suggerisce la loro possibilità di impiego in ambito clinico: 1) conoscere la stima del rischio di frattura intra-operatorio può servire come strumento di guida per il chirurgo nella scelta dell’impianto protesico ottimale; 2) conoscere la variazione di densità minerale ossea dopo un anno dall’operazione può essere utilizzato come strumento di monitoraggio post-operatorio del paziente

    Bone strain index as a predictor of further vertebral fracture in osteoporotic women: An artificial intelligence-based analysis

    Get PDF
    Background Osteoporosis is an asymptomatic disease of high prevalence and incidence, leading to bone fractures burdened by high mortality and disability, mainly when several subsequent fractures occur. A fragility fracture predictive model, Artificial Intelligence-based, to identify dual X-ray absorptiometry (DXA) variables able to characterise those patients who are prone to further fractures called Bone Strain Index, was evaluated in this study. Methods In a prospective, longitudinal, multicentric study 172 female outpatients with at least one vertebral fracture at the first observation were enrolled. They performed a spine X-ray to calculate spine deformity index (SDI) and a lumbar and femoral DXA scan to assess bone mineral density (BMD) and bone strain index (BSI) at baseline and after a follow-up period of 3 years in average. At the end of the follow-up, 93 women developed a further vertebral fracture. The further vertebral fracture was considered as one unit increase of SDI. We assessed the predictive capacity of supervised Artificial Neural Networks (ANNs) to distinguish women who developed a further fracture from those without it, and to detect those variables providing the maximal amount of relevant information to discriminate the two groups. ANNs choose appropriate input data automatically (TWIST-system, Training With Input Selection and Testing). Moreover, we built a semantic connectivity map usingthe Auto Contractive Map to provide further insights about the convoluted connections between the osteoporotic variables under consideration and the two scenarios (further fracture vs no further fracture). Results TWIST system selected 5 out of 13 available variables: age, menopause age, BMI, FTot BMC, FTot BSI. With training testing procedure, ANNs reached predictive accuracy of 79.36%, with a sensitivity of 75% and a specificity of 83.72%. The semantic connectivity map highlighted the role of BSI in predicting the risk of a further fracture. Conclusions Artificial Intelligence is a useful method to analyse a complex system like that regarding osteoporosis, able to identify patients prone to a further fragility fracture. BSI appears to be a useful DXA index in identifying those patients who are at risk of further vertebral fractures. Copyright

    Evolutionary Pathways of Diagnosis in Osteoporosis

    Get PDF

    Stochastic Assessment of Bone Fragility in Human Lumbar Spine

    Get PDF
    Osteoporotic fractures are a vital public health concern and create a great economic burden for our society. It is estimated that more than 2 million fractures occur in the United States at a cost of $17 billion each year. Deterioration of microarchitecture of trabecular bone is considered as a major contributor to bone fragility. Current clinical imaging modalities such as Dual-energy X-ray absorptiometry (DXA) are not able to describe bone microarchitecture due to their low resolution. The main objective of this study was to obtain the relationship between stochastic parameters calculated from bone mineral density (BMD) maps of DXA scans and the microarchitecture parameters measured from three dimensional (3D) images of human lumbar vertebrae acquired using a Micro-Computed Tomography (Micro-CT) scanner. Eighteen human lumbar vertebrae with intact posterior elements were scanned in the posterior-anterior projection using a DXA scanner. Stochastic parameters such as correlation length (L), sill variance (C) and nugget variance ( ) were calculated by fitting a theoretical model onto the experimental variogram of the BMD map of the human vertebrae. In addition, microarchitecture parameters such as bone volume fraction (BV/TV), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), connectivity density (Conn.Dn), and bone surface-to-volume ratio (BS/BV) were measured from 3D images of the same human lumbar vertebrae. Significant correlations were observed between stochastic predictors and microarchitecture parameters of trabecular bone. Specifically, the sill variance was positively correlated with the bone volume fraction, trabecular thickness, trabecular number, connectivity density and negatively correlated with the bone surface to volume ratio and trabecular separation. This study demonstrates that stochastic assessment of the inhomogeneity of bone mineral density from routine clinical DXA scans of human lumbar vertebrae may have the potential to serve as a valuable clinical tool in enhancing the prediction of risks for osteoporotic fractures in the spine. The main advantage of using DXA scans is that it would be cost effective, since most hospitals already have DXA machines and there would be no need for purchasing new equipment

    Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning

    Full text link
    [EN] A great challenge in osteoporosis clinical assessment is identifying patients at higher risk of hip fracture. Bone Mineral Density (BMD) measured by Dual-Energy X-Ray Absorptiometry (DXA) is the current gold-standard, but its classification accuracy is limited to 65%. DXA-based Finite Element (FE) models have been developed to predict the mechanical failure of the bone. Yet, their contribution has been modest. In this study, supervised machine learning (ML) is applied in conjunction with clinical and computationally driven mechanical attributes. Through this multi-technique approach, we aimed to obtain a predictive model that outperforms BMD and other clinical data alone, as well as to identify the best-learned ML classifier within a group of suitable algorithms. A total number of 137 postmenopausal women (81.4 +/- 6.95 years) were included in the study and separated into a fracture group (n = 89) and a control group (n = 48). A semi-automatic and patient-specific DXA-based FE model was used to generate mechanical attributes, describing the geometry, the impact force, bone structure and mechanical response of the bone after a sideways-fall. After preprocessing the whole dataset, 19 attributes were selected as predictors. Support Vector Machine (SVM) with radial basis function (RBF), Logistic Regression, Shallow Neural Networks and Random Forest were tested through a comprehensive validation procedure to compare their predictive performance. Clinical attributes were used alone in another experimental setup for the sake of comparison. SVM was confirmed to generate the best-learned algorithm for both experimental setups, including 19 attributes and only clinical attributes. The first, generated the best-learned model and outperformed BMD by 14pp. The results suggests that this approach could be easily integrated for effective prediction of hip fracture without interrupting the actual clinical workflow.This study was partially funded by two grants Catedra UPVFundacion Quaes, obtained by Eduardo Villamor Medina and Antonio Cutillas Pardines, and one FPI grant (FPI-SP20170111) from the Universitat Politecnica de Valencia obtained by Eduardo Villamor Medina.Villamor, E.; Monserrat Aranda, C.; Del Río, L.; Romero-Martín, J.; Rupérez Moreno, MJ. (2020). Prediction of osteoporotic hip fracture in postmenopausal women through patient-specific FE analyses and machine learning. Computer Methods and Programs in Biomedicine. 193:1-11. https://doi.org/10.1016/j.cmpb.2020.105484S111193Holt, G., Smith, R., Duncan, K., Hutchison, J. D., & Reid, D. (2009). Changes in population demographics and the future incidence of hip fracture. Injury, 40(7), 722-726. doi:10.1016/j.injury.2008.11.004Cooper, C., Campion, G., & Melton, L. J. (1992). Hip fractures in the elderly: A world-wide projection. Osteoporosis International, 2(6), 285-289. doi:10.1007/bf01623184Cooper, C., Atkinson, E. J., Jacobsen, S. J., O’Fallon, W. M., & Melton, L. J. (1993). Population-Based Study of Survival after Osteoporotic Fractures. American Journal of Epidemiology, 137(9), 1001-1005. doi:10.1093/oxfordjournals.aje.a116756Geusens, P., van Geel, T., & van den Bergh, J. (2010). Can hip fracture prediction in women be estimated beyond bone mineral density measurement alone? Therapeutic Advances in Musculoskeletal Disease, 2(2), 63-77. doi:10.1177/1759720x09359541El Maghraoui, A., & Roux, C. (2008). DXA scanning in clinical practice. QJM, 101(8), 605-617. doi:10.1093/qjmed/hcn022Chevalley, T., Rizzoli, R., Nydegger, V., Slosman, D., Tkatch, L., Rapin, C.-H., … Bonjour, J.-P. (1991). Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporosis International, 1(3), 147-154. doi:10.1007/bf01625444Li, N., Li, X., Xu, L., Sun, W., Cheng, X., & Tian, W. (2013). Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. International Journal of Endocrinology, 2013, 1-5. doi:10.1155/2013/895474Fountoulis, G., Kerenidi, T., Kokkinis, C., Georgoulias, P., Thriskos, P., Gourgoulianis, K., … Vlychou, M. (2016). Assessment of Bone Mineral Density in Male Patients with Chronic Obstructive Pulmonary Disease by DXA and Quantitative Computed Tomography. International Journal of Endocrinology, 2016, 1-6. doi:10.1155/2016/6169721Yang, L., Palermo, L., Black, D. M., & Eastell, R. (2014). Prediction of Incident Hip Fracture with the Estimated Femoral Strength by Finite Element Analysis of DXA Scans in the Study of Osteoporotic Fractures. Journal of Bone and Mineral Research, 29(12), 2594-2600. doi:10.1002/jbmr.2291Dall’Ara, E., Eastell, R., Viceconti, M., Pahr, D., & Yang, L. (2016). Experimental validation of DXA-based finite element models for prediction of femoral strength. Journal of the Mechanical Behavior of Biomedical Materials, 63, 17-25. doi:10.1016/j.jmbbm.2016.06.004Enns-Bray, W. S., Bahaloo, H., Fleps, I., Pauchard, Y., Taghizadeh, E., Sigurdsson, S., … Helgason, B. (2019). Biofidelic finite element models for accurately classifying hip fracture in a retrospective clinical study of elderly women from the AGES Reykjavik cohort. Bone, 120, 25-37. doi:10.1016/j.bone.2018.09.014Terzini, M., Aldieri, A., Rinaudo, L., Osella, G., Audenino, A. L., & Bignardi, C. (2019). Improving the Hip Fracture Risk Prediction Through 2D Finite Element Models From DXA Images: Validation Against 3D Models. Frontiers in Bioengineering and Biotechnology, 7. doi:10.3389/fbioe.2019.00220Nguyen, N. D., Frost, S. A., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2008). Development of prognostic nomograms for individualizing 5-year and 10-year fracture risks. Osteoporosis International, 19(10), 1431-1444. doi:10.1007/s00198-008-0588-0Kanis, J. A., Oden, A., Johansson, H., Borgström, F., Ström, O., & McCloskey, E. (2009). FRAX® and its applications to clinical practice. Bone, 44(5), 734-743. doi:10.1016/j.bone.2009.01.373Bolland, M. J., Siu, A. T., Mason, B. H., Horne, A. M., Ames, R. W., Grey, A. B., … Reid, I. R. (2011). Evaluation of the FRAX and Garvan fracture risk calculators in older women. Journal of Bone and Mineral Research, 26(2), 420-427. doi:10.1002/jbmr.215Kruse, C., Eiken, P., & Vestergaard, P. (2016). Clinical fracture risk evaluated by hierarchical agglomerative clustering. Osteoporosis International, 28(3), 819-832. doi:10.1007/s00198-016-3828-8Nishiyama, K. K., Ito, M., Harada, A., & Boyd, S. K. (2013). Classification of women with and without hip fracture based on quantitative computed tomography and finite element analysis. Osteoporosis International, 25(2), 619-626. doi:10.1007/s00198-013-2459-6Jiang, P., Missoum, S., & Chen, Z. (2015). Fusion of clinical and stochastic finite element data for hip fracture risk prediction. Journal of Biomechanics, 48(15), 4043-4052. doi:10.1016/j.jbiomech.2015.09.044Naylor, K. E., McCloskey, E. V., Eastell, R., & Yang, L. (2013). Use of DXA-based finite element analysis of the proximal femur in a longitudinal study of hip fracture. Journal of Bone and Mineral Research, 28(5), 1014-1021. doi:10.1002/jbmr.1856Maas, S. A., Ellis, B. J., Ateshian, G. A., & Weiss, J. A. (2012). FEBio: Finite Elements for Biomechanics. Journal of Biomechanical Engineering, 134(1). doi:10.1115/1.4005694Rossman, T., Kushvaha, V., & Dragomir-Daescu, D. (2015). QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Computer Methods in Biomechanics and Biomedical Engineering, 19(2), 208-216. doi:10.1080/10255842.2015.1006209Si, H. (2015). TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software, 41(2), 1-36. doi:10.1145/2629697Yang, L., Peel, N., Clowes, J. A., McCloskey, E. V., & Eastell, R. (2009). Use of DXA-Based Structural Engineering Models of the Proximal Femur to Discriminate Hip Fracture. Journal of Bone and Mineral Research, 24(1), 33-42. doi:10.1359/jbmr.080906Schileo, E., Dall’Ara, E., Taddei, F., Malandrino, A., Schotkamp, T., Baleani, M., & Viceconti, M. (2008). An accurate estimation of bone density improves the accuracy of subject-specific finite element models. Journal of Biomechanics, 41(11), 2483-2491. doi:10.1016/j.jbiomech.2008.05.017Morgan, E. F., & Keaveny, T. M. (2001). Dependence of yield strain of human trabecular bone on anatomic site. Journal of Biomechanics, 34(5), 569-577. doi:10.1016/s0021-9290(01)00011-2Morgan, E. F., Bayraktar, H. H., & Keaveny, T. M. (2003). Trabecular bone modulus–density relationships depend on anatomic site. Journal of Biomechanics, 36(7), 897-904. doi:10.1016/s0021-9290(03)00071-xBayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., & Keaveny, T. M. (2004). Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. Journal of Biomechanics, 37(1), 27-35. doi:10.1016/s0021-9290(03)00257-4Ün, K., Bevill, G., & Keaveny, T. M. (2006). The effects of side-artifacts on the elastic modulus of trabecular bone. Journal of Biomechanics, 39(11), 1955-1963. doi:10.1016/j.jbiomech.2006.05.012Schileo, E., Balistreri, L., Grassi, L., Cristofolini, L., & Taddei, F. (2014). To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations? Journal of Biomechanics, 47(14), 3531-3538. doi:10.1016/j.jbiomech.2014.08.024Wirtz, D. C., Schiffers, N., Pandorf, T., Radermacher, K., Weichert, D., & Forst, R. (2000). Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. Journal of Biomechanics, 33(10), 1325-1330. doi:10.1016/s0021-9290(00)00069-5Eckstein, F., Wunderer, C., Boehm, H., Kuhn, V., Priemel, M., Link, T. M., & Lochmüller, E.-M. (2003). Reproducibility and Side Differences of Mechanical Tests for Determining the Structural Strength of the Proximal Femur. Journal of Bone and Mineral Research, 19(3), 379-385. doi:10.1359/jbmr.0301247Orwoll, E. S., Marshall, L. M., Nielson, C. M., Cummings, S. R., Lapidus, J., … Cauley, J. A. (2009). Finite Element Analysis of the Proximal Femur and Hip Fracture Risk in Older Men. Journal of Bone and Mineral Research, 24(3), 475-483. doi:10.1359/jbmr.081201Choi, W. J., Cripton, P. A., & Robinovitch, S. N. (2014). Effects of hip abductor muscle forces and knee boundary conditions on femoral neck stresses during simulated falls. Osteoporosis International, 26(1), 291-301. doi:10.1007/s00198-014-2812-4Van den Kroonenberg, A. J., Hayes, W. C., & McMahon, T. A. (1995). Dynamic Models for Sideways Falls From Standing Height. Journal of Biomechanical Engineering, 117(3), 309-318. doi:10.1115/1.2794186Robinovitch, S. N., Hayes, W. C., & McMahon, T. A. (1991). Prediction of Femoral Impact Forces in Falls on the Hip. Journal of Biomechanical Engineering, 113(4), 366-374. doi:10.1115/1.2895414Robinovitch, S. N., McMahon, T. A., & Hayes, W. C. (1995). Force attenuation in trochanteric soft tissues during impact from a fall. Journal of Orthopaedic Research, 13(6), 956-962. doi:10.1002/jor.1100130621Dufour, A. B., Roberts, B., Broe, K. E., Kiel, D. P., Bouxsein, M. L., & Hannan, M. T. (2011). The factor-of-risk biomechanical approach predicts hip fracture in men and women: the Framingham Study. Osteoporosis International, 23(2), 513-520. doi:10.1007/s00198-011-1569-2Schileo, E., Taddei, F., Cristofolini, L., & Viceconti, M. (2008). Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. Journal of Biomechanics, 41(2), 356-367. doi:10.1016/j.jbiomech.2007.09.009Mautalen, C. A., Vega, E. M., & Einhorn, T. A. (1996). Are the etiologies of cervical and trochanteric hip fractures different? Bone, 18(3), S133-S137. doi:10.1016/8756-3282(95)00490-4Yang, S., Leslie, W. D., Luo, Y., Goertzen, A. L., Ahmed, S., Ward, L. M., … Lix, L. M. (2017). Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Osteoporosis International, 29(1), 191-200. doi:10.1007/s00198-017-4232-8Testi, D., Viceconti, M., Cappello, A., & Gnudi, S. (2002). Prediction of Hip Fracture Can Be Significantly Improved by a Single Biomedical Indicator. Annals of Biomedical Engineering, 30(6), 801-807. doi:10.1114/1.1495866Langton, C. M., Pisharody, S., & Keyak, J. H. (2008). Generation of a 3D proximal femur shape from a single projection 2D radiographic image. Osteoporosis International, 20(3), 455-461. doi:10.1007/s00198-008-0665-4Humbert, L., Martelli, Y., Fonolla, R., Steghofer, M., Di Gregorio, S., Malouf, J., … Barquero, L. M. D. R. (2017). 3D-DXA: Assessing the Femoral Shape, the Trabecular Macrostructure and the Cortex in 3D from DXA images. IEEE Transactions on Medical Imaging, 36(1), 27-39. doi:10.1109/tmi.2016.2593346Keyak, J. H., Sigurdsson, S., Karlsdottir, G., Oskarsdottir, D., Sigmarsdottir, A., Zhao, S., … Lang, T. F. (2011). Male–female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone, 48(6), 1239-1245. doi:10.1016/j.bone.2011.03.682Lobo, E., Marcos, G., Santabárbara, J., Salvador-Rosés, H., Lobo-Escolar, L., De la Cámara, C., … Lobo-Escolar, A. (2017). Gender differences in the incidence of and risk factors for hip fracture: A 16-year longitudinal study in a southern European population. Maturitas, 97, 38-43. doi:10.1016/j.maturitas.2016.12.00
    corecore