226 research outputs found

    recent theoretical approaches to minimal artificial cells

    Get PDF
    Minimal artificial cells (MACs) are self-assembled chemical systems able to mimic the behavior of living cells at a minimal level, i.e. to exhibit self-maintenance, self-reproduction and the capability of evolution. The bottom-up approach to the construction of MACs is mainly based on the encapsulation of chemical reacting systems inside lipid vesicles, i.e. chemical systems enclosed (compartmentalized) by a double-layered lipid membrane. Several researchers are currently interested in synthesizing such simple cellular models for biotechnological purposes or for investigating origin of life scenarios. Within this context, the properties of lipid vesicles (e.g., their stability, permeability, growth dynamics, potential to host reactions or undergo division processes…) play a central role, in combination with the dynamics of the encapsulated chemical or biochemical networks. Thus, from a theoretical standpoint, it is very important to develop kinetic equations in order to explore first—and specify later—the conditions that allow the robust implementation of these complex chemically reacting systems, as well as their controlled reproduction. Due to being compartmentalized in small volumes, the population of reacting molecules can be very low in terms of the number of molecules and therefore their behavior becomes highly affected by stochastic effects both in the time course of reactions and in occupancy distribution among the vesicle population. In this short review we report our mathematical approaches to model artificial cell systems in this complex scenario by giving a summary of three recent simulations studies on the topic of primitive cell (protocell) systems

    Modelling Early Transitions Toward Autonomous Protocells

    Get PDF
    This thesis broadly concerns the origins of life problem, pursuing a joint approach that combines general philosophical/conceptual reflection on the problem along with more detailed and formal scientific modelling work oriented in the conceptual perspective developed. The central subject matter addressed is the emergence and maintenance of compartmentalised chemistries as precursors of more complex systems with a proper cellular organization. Whereas an evolutionary conception of life dominates prebiotic chemistry research and overflows into the protocells field, this thesis defends that the 'autonomous systems perspective' of living phenomena is a suitable - arguably the most suitable - conceptual framework to serve as a backdrop for protocell research. The autonomy approach allows a careful and thorough reformulation of the origins of cellular life problem as the problem of how integrated autopoietic chemical organisation, present in all full-fledged cells, originated and developed from more simple far-from-equilibrium chemical aggregate systems.Comment: 205 Pages, 27 Figures, PhD Thesis Defended Feb 201

    Modelling early transitions toward autonomous protocells.

    Get PDF
    252 p.La transición entre materia inerte y viviente sigue constituyendo un problema abierto en ciencia. Las líneas de investigación actuales en el campo del origen de la vida, ya sean basadas en moléculas replicativas individuales o en la nueva visión protocelular del problema, están típicamente orientadas hacia una concepción evolutiva de lo vivo. De acuerdo a esta concepción, el interés fundamental se centra en descubrir cómo moléculas o ensamblados químicos prebióticamente plausibles comenzaron a replicarse, a engarzarse en dinámicas selectivas y a aumentar en complejidad -- en último término, hacia la complejidad bioquímica de las células vivas. Esta tesis doctoral se enfrenta al problema del origen de vida celular desde una plataforma conceptual alternativa, la perspectiva de los sistemas autónomos, la cual pivota sobre la teoría de la Autonomía Biológica. Desde dicha perspectiva sistémica de la organización celular, las transiciones clave en el origen de la vida deben ser reformuladas en términos de cómo determinados sistemas químicos compartimentados (es decir, protocélulas) comenzaron a desarrollar infraestructuras químicas integradas para poder mantenerse en condiciones alejadas del equilibrio; y, a continuación, cómo estas infraestructuras integradas pasaron a constituir la organización autopoiética que despliegan las células propiamente biológicas. La autonomía define un marco global cualitativamente distinto --y también más amplio y apropiado, se argumenta-- para conducir y dar sentido a la investigación científica sobre protocélulas.El trabajo presentado en esta tesis resulta de un bucle en el que se entrelazan la reflexión filosófica sobre el problema del origen de la vida y la modelización científica en torno a los sistemas proto-celulares. Podríamos decir que constituye una demostración práctica de cómo la interacción directa entre ciencia y filosofía es capaz de dar lugar a intuiciones nuevas y fructíferos resultados en torno a un problema complejo, como lo es la transición desde la física y la química hacia la biología. A nivel conceptual, este trabajo de tesis doctoral se adentra en la concepción de vida como autonomía y analiza las implicaciones (radicales) que esta visión organizativa y sistémica de lo vivo tiene en el planteamiento sobre las transiciones principales de la evolución proto-celular. A nivel científico, la tesis se ha construido en torno a la elaboración de modelos proto-celulares realistas, ¿semi-empíricos¿, mediante los cuales se ha pretendido iluminar los primeros pasos que deben darse, desde un escenario físico-químico generalista, hacia los sistemas autónomos más primitivos o mínimos. A lo largo de todo el trabajo, ambos niveles de análisis, conceptual y científico, se retroalimentan, quedando profundamente imbricados y mutuamentereforzados: los aspectos conceptuales resultan esenciales para definir y destacar el valor de las cuestiones científicas abordadas, mientras que la labor de carácter propiamente científico hace posible una mayor especificación de algunas problemáticas que tienden a ser desdeñadas en el campo de investigación de la química prebiótica, incluyendo los enfoques proto-celulares.Objetivos principalesLos objetivos principales de esta tesis doctoral son los siguientes:1. Explicar de qué manera(s) la perspectiva de la autonomía biológica condiciona el programa de investigación sobre el origen de la vida, detallando el conjunto de cuestiones científicas que dicha perspectiva lleva a tratar, así como las transiciones prebióticas que plantea como fundamentales -- en contraste con el paradigma evolutivo establecido en el campo.2. Explorar las raíces físico-químicas de la autonomía biológica, identificando y poniendo en relieve un área ciega en la investigación actual sobre proto-células: a saber, la modelización teórica rigurosa de sistemas químicos elementales en interacción con compartimentos lipídicos dinámicos. Argumentar en qué sentido este escenario prebiótico constituye una transición necesaria hacia formas de autonomía protocelular básica o mínima.3. Desarrollar modelos protocelulares semi-empíricos que aporten nuevas claves sobre la cuestión del acoplamiento temprano entre reacciones químicas y compartimentos lipídicos dinámicos, previo a la aparición de células metabólicas -- es decir, propiamente auto-productivas.4. Examinar pormenorizadamente las implicaciones de dicho trabajo de modelización sobre el marco conceptual general de la autonomía y, más específicamente, en lo que se refiere a su aplicación al contexto del origen de la vida.5. Identificar y explicar los retos futuros a los que se enfrenta la modelización semi-empírica de sistemas proto-celulares, proponiendo estrategias para avanzar en la comprensión sobre cómo dichos sistemas fueron desarrollando comportamiento autónomo.A continuación se ofrece un compendio de los contenidos de este trabajo de tesis doctoral, destacando las ideas principales y la línea conceptual básica que se ha seguido. Los capítulos 1-3 consisten en una introducción extendida al trabajo, incluyendo una revisión detallada de la bibliografía previa relevante. Esta parte inicial establece el marcoteórico general desde el cual se enfoca el problema del origen de la vida en la tesis, examinando cuidadosamente las implicaciones que la perspectiva de la autonomía tiene sobre el programa de investigación en sistemas proto-celulares, antes de acometer la identificación y especificación de los problemas concretos que se someterán a modelización en la misma, como contribución de naturaleza más estrictamente científica.Sumario de contenidosEsta tesis comienza en el Capítulo 1 con un repaso general introductorio sobre la investigación en sistemas proto-celulares. Dentro del campo del origen de la vida, las proto-células (sistemas físico-químicos compartimentados que se asemejan de un modo más o menos distante a las células vivas) se perciben cada día más como un puente fundamental hacia los sistemas biológicos. Pueden citarse muchas razones por las que la presencia de compartimentos auto-ensamblados desde fases muy tempranas en el origen de la vida es beneficiosa, al tiempo que altamente plausible. Los argumentos a favor de su relevancia prebiótica abarcan desde el papel que pudieron jugar como `localizadores¿ o `segregadores¿ de poblaciones moleculares (permitiendo su evolución) hasta el de establecer el andamiaje y las condiciones químicas adecuadas para acoger y potenciar complejas secuencias de reacciones químicas interconectadas.No obstante, aunque constituyan un vehículo útil para explicar el proceso de abiogénesis, las protocélulas son más bien neutrales desde un punto de vista conceptual y, tomadas en un sentido amplio, no definen un programa de investigación específico sobre el origen de vida -- sobre todo bajo la asunción de que ésta debe convertirse en celular en algún momento. De hecho, en la práctica, las proto-células son empleadas en programas de investigación científica que se adhieren a visiones generales notablemente divergentes sobre lo que el fenómeno `vida¿ lleva consigo. Distintos autores mantienen (implícita o explícitamente) concepciones muy diferentes sobre lo que es la vida y estas concepciones se filtran y sesgan el tipo de experimentos y de modelos protocelulares que impulsan, así como la manera en que interpretan los resultados de dichos experimentos.Por tanto, una labor de reflexión teórica y filosófica más profunda sobre lo que constituye `vida¿ es de central importancia para la investigación proto-celular y, más en general, para el estudio del origen de los sistemas biológicos. A pesar de que persisten las dificultades a la hora de establecer una clara ¿línea divisoria¿, universalmente aceptada, entre el mundo inerte y el viviente, los investigadores de campos como el origen de la vida, la vida artificial o la biología sintética se siguen demarcando según dos amplias corrientes conceptuales. El objetivo del Capítulo 2 es explicar, en detalle, los principios básicos sobre los que se articulan dichas corrientes conceptuales. La corriente dominante en la actualidad, que mantiene una visión evolutiva de la vida, pivota sobre una perspectivadiacrónica de los sistemas biológicos, analizados a través de sucesivas generaciones o linajes, de acuerdo a la cual lo vivo se manifestaría por primera vez en sistemas químicos capaces de reproducción, proliferación, e incremento de complejidad por procesos de competición y selección. Esta perspectiva se apoya en la extensión de los principios evolutivos (como por ejemplo, el mecanismo de la selección natural) a unidades mucho más simples que los organismos vivos, y subyace a hipótesis de trabajo como la del `mundo ARN¿ o al proyecto de la `ribo-célula¿. La corriente alternativa, menos extendida en el campo de los orígenes hasta la fecha, se apoya sobre una visión de la vida como autonomía (o `autopoiesis¿), interpretando los sistemas biológicos desde una perspectiva sincrónica, que se centra en el estudio del tipo de organización de componentes y procesos que los caracteriza, aquí y ahora, como sistemas alejados del equilibrio pero de gran robustez dinámica. Esta concepción defiende enfoques como los de la `química de sistemas¿ (acoplamiento de redes auto-catalíticas) o el `mundo de los lípidos¿.A pesar de que las líneas de investigación prebiótica más importantes en la actualidad se encuadran dentro la concepción evolutiva de la vida, en esta tesis doctoral se argumenta que la perspectiva de la autonomía, si bien aún minoritaria, es de hecho el marco conceptual más adecuado y abarcador a la hora de encarar el problema del origen de la vida -- en particular, la emergencia de la celularidad. Un punto ciego muy importante de los enfoques evolutivos es que, al percibir que la vida se manifiesta, por encima de todo, `a través del tiempo¿, adolecen de una falta de rigurosidad en cuanto a la descripción de la organización material, físico-química, que subyace a un sistema celular con metabolismo propio. Los planteamientos evolutivos asumen implícitamente que las células vivas son redes químicas instruidas genéticamente e individualizadas en `bolsas lipídicas¿. Esta noción tan débil de celularidad se traduce en programas de investigación principalmente enfocados al estudio de conjuntos o poblaciones de especies químicas de relevancia biológica que tengan potencial de incrementar por sí mismas en complejidad a lo largo del tiempo (típicamente aplicando técnicas de evolución artificial, in vitro o in silico). Así, se lleva a cabo un uso meramente instrumental de los compartimentos protocelulares, incluyéndolos como `contenedores químicos¿ del sistema tan sólo en la medida en que se compruebe o se intuya que puedan facilitar la consecución de dicho objetivo evolutivo primario.La perspectiva de la autonomía, en cambio, inculca un profundo reconocimiento del complejo entramado organizativo en el que se disponen las moléculas biológicas, coordinadas tanto espacialmente como temporalmente, para lograr constituir una célula funcional que mantenga su dinámica alejada del equilibrio. Esta visión sistémica y organizativa de la celularidad se refleja en un empeño mucho más pronunciado por comprender, en el contexto del origen de la vida, cómo es posible que surjan y se establezcan sistemas químicos acoplados con los compartimentos en los que son espontáneamente encapsulados, de manera que progresen hacia formas de integracióncada vez más similares a la complementariedad autopoiética, auto-productiva, que caracteriza a las células vivas. Por tanto, la clave que distingue a la perspectiva de la autonomía es su pretensión de hacer tan explícito y preciso como sea posible el problema del acoplamiento y la integración funcional de componentes y procesos químicos diversos, como un requisito necesario para constituir --en condiciones alejadas del equilibrio termodinámico-- entidades con identidad y frontera propias. Esto conduce de manera natural, como se muestra en esta tesis, al tratamiento de aspectos específicos relacionados con el auto-ensamblaje de compartimentos supramoleculares, su permeabilidad selectiva a distintos componentes moleculares, posibles desequilibrios osmóticos (y trasvases acuosos compensatorios a través de la membrana), canalización y distribución de recursos energéticos¿ aspectos todos ellos en los que la perspectiva evolutiva no suele mostrar mayor interés.El Capítulo 3 explica el modo en que puede implementarse un programa de investigación sobre autonomía protocelular, construyendo un puente entre los enfoques científicos y conceptuales descritos los dos primeros capítulos. El capítulo comienza analizando las razones por las cuales la teoría de la autonomía biológica, a pesar de su relevancia y centralidad, conduce a retos o problemáticas que no son fáciles de traducir en modelos simplificados, cuantitativos y precisos. A continuación se revisan las aproximaciones, experimentales y computacionales, que se han venido realizando en el pasado para implementar sistemas autopoiéticos mínimos, in vitro e in silico, descritos como intentos preliminares para la modelización de sistemas autónomos, mostrando asimismo sus correspondientes limitaciones. Una vez completada la revisión, se introduce el planteamiento ¿semi-empírico¿ híbrido que será defendido en la tesis como vía teórica, bien apoyada en resultados experimentales realistas, que permite enfrentarse de un modo más sólido y coherente al origen de la autonomía protocelular.En la última parte del Capítulo 3 se identifica y delimita de manera más precisa el área concreta en el que este trabajo de tesis doctoral ha llevado a cabo sus contribuciones científicas: la modelización realista de químicas alejadas del equilibrio que tienen lugar en compartimentos lipídicos dinámicos. Esta área implica la elaboración de modelos de reactores proto-celulares tempranos, los cuales precedieron a las primeras proto-células estrictamente auto-productivas. Este tipo de reactor compartimentado inicial no tendría aún la capacidad de fabricar componentes orgánicos relativamente complejos (como lípidos o péptidos), pero habrían comenzado a desplegar comportamientos no-lineares y emergentes de relevancia biológica.El Capítulo 4 proporciona una síntesis, sin entrar en mucho detalle técnico, de las aportaciones científicas llevadas a cabo. Cuatro modelos diferentes, elaborados durante la realización de esta tesis, son revisados en secuencia. Entre ellos destaca el trabajo de modelización de la cinética de intercambio de lípidos de membrana (con su entornoacuoso), validado de manera rigurosa frente a resultados experimentales, como parte fundamental del modelo semi-empírico proto-celular introducido en el Capítulo 3. También se pone de especial relieve otro modelo, planteado a un nivel de complejidad protocelular superior, en el cual ya hay presencia de una cierta química interna. Con este modelo queda demostrado que el flujo acuoso a través de la membrana de vesículas relativamente simples (aunque, eso sí, de volumen variable) puede contribuir a crear una mayor riqueza de comportamientos dinámicos reactivos, asociados a dicha química interna. Este tipo de acoplamiento entre reactor y frontera encapsuladora se daría en un amplio espectro de condiciones, siempre y cuando el flujo de agua ocurra en respuesta a efectos osmóticos generados por la propia química interna. Así pues, en ese punto se introduce y explica pormenorizadamente la idea del `acoplamiento osmótico¿, como un principio sistémico general que sería de aplicación a toda clase de metabolismo compartimentado, independientemente de su complejidad, siempre que el compartimento sea dinámico, de volumen variable.Finalmente, en el Capítulo 5 se aborda una recapitulación general del trabajo y un debate acerca de las limitaciones del planteamiento semi-empírico defendido, así como una serie de indicaciones sobre líneas de trabajo de posible interés para el futuro. Se vuelve a poner en valor la perspectiva organizativa-sistémica que propugna la teoría de la autonomía, argumentando a favor de la necesidad de una caracterización adecuada, bien articulada, de las entidades individuales básicas que en definitiva son capaces de evolución biológica: las células vivas. Desde ese punto de vista, alternativo al establecido mayoritariamente en el campo del origen de la vida, se sugiere un conjunto de transiciones prebióticas fundamentales que reflejan, en esencia, el hipotético desarrollo de poblaciones de sistemas proto-celulares de complejidad creciente.ConclusionesEn definitiva, como resultado de este trabajo de tesis doctoral, podemos extraer las siguientes conclusiones generales:1. La investigación científica sobre el origen de la vida requiere un importante trabajo de análisis y clarificación conceptual. El campo de la química prebiótica es un área de investigación que se beneficia claramente de la combinación de planteamientos científicos y filosófico-conceptuales. Cualquier intento de sintetizar sistemas biológicos a partir de sus ingredientes o precursores físico-químicos elementales se lleva a cabo desde una determinada concepción sobre lo que es `vida¿. Y según la interpretación que se haga de este término, incluso las agendas o programas de investigación enfocados sobre sistemas proto-celulares pueden llegar a ser divergentes, o sorprendentemente diferentes. Portanto, es muy aconsejable que los investigadores reconozcan y hagan lo más explícita posible su postura sobre esta cuestión en sus contribuciones científicas.2. La perspectiva de la autonomía, aplicada al problema del origen de la vida, promueve retos de carácter sistémico, de gran calado para la química, asociados a la emergencia de la organización celular. La aceptación y el despliegue de este tipo de planteamiento lleva emparejado una reformulación radical de las transiciones prebióticas y la investigación en sistemas proto-celulares. En particular, preguntarse por la cuestión de la autonomía mínima conduce a programas de investigación que buscan con ahínco descubrir los principios y mecanismos moleculares que subyacen a los distintos tipos/grados de acoplamiento funcional (entre componentes y procesos de transformación de dichos componentes) que debieron darse a lo largo del desarrollo de la protocelularidad. Los enfoques sobre proto-células puramente evolutivos pasan por alto este requerimiento del acoplamiento y la integración funcional, que no obstante es clave para desentrañar el modo en que diversas estructuras materiales consiguen constituirse como organizaciones celulares. El desarrollo riguroso de una teoría sobre la organización celular y su emergencia en condiciones prebióticas pasa por comprender mejor de qué manera distintos compartimentos proto-celulares y químicas proto-metabólicas pueden engarzarse funcionalmente e iniciar un proceso de co-evolución que lleve hacia un comportamiento autónomo básico lo suficientemente robusto.3. La autonomía es un concepto multidimensional y heurístico que puede transformarse en un conjunto de cuestiones concretas a investigar científicamente mediante la modelización semi-empírica de sistemas proto-celulares. Más específicamente, este tipo de labor de modelización teórica se puede aplicar con éxito al estudio de la co-evolución entre membrana y red proto-metabólica en un contexto protocelular. Los resultados obtenidos, si el modelo está bien construido y justificado empíricamente, pueden efectivamente abrir nuevas vías de exploración experimental y proporcionar argumentos explicativos complementarios a los enfoques proto-celulares in vitro.4. La síntesis de la membrana por parte del metabolismo, como defiende clásicamente la teoría de la autopoiesis, no es estrictamente necesaria para que los sistemas protocelulares comiencen a exhibir comportamientos emergentes, no lineales, de profundo interés biológico. Redes compartimentadas de reacciones químicas con capacidad de fabricar internamente sus propios componentes (como lípidos, catalizadores o péptidos) pueden considerarse como una etapa intermedia, o relativamente tardía, en la evolución de la organización proto-celular. Previamente deben desarrollarse, con alta probabilidad, otro tipo de proto-células que presenten acoplamientos más débiles o indirectos entre sus componentes y los procesos transformativos en los que estos están involucrados. La especificación rigurosa de este tipo de acoplamientos entre química ycompartimentos debería pasar a ser uno de los objetivos fundamentales a abordar por la investigación sobre proto-células que se realice en el futuro5. El acoplamiento osmótico constituye un nuevo principio o constricción general, de carácter sistémico, que debe aplicarse sobre proto-células metabólicas de distinto tipo. Aunque se trata de un aspecto que ha recibido muy poca atención hasta la fecha en el campo del origen de la vida, tiene importantes implicaciones ya que prácticamente todos los modelos proto-celulares empíricos en la actualidad están basados en vesículas que son muy susceptibles a desequilibrios osmóticos pero, al mismo tiempo, incapaces de regular de manera efectiva su volumen acuoso interno. Así, las variaciones en volumen que se produjeran en las protocélulas tempranas tendrían efectos muy significativos en las dinámicas internas de reacción, como se demuestra en este trabajo de tesis doctoral. En particular, una de las publicaciones científicas asociadas a esta tesis explica detalladamente los efectos que el volumen variable de una proto-célula puede tener sobre reacciones que, siendo en principio independientes químicamente, por el mero hecho de compartir un mismo espacio reactivo (el definido por el micro-compartimento lipídico), se acoplarían de manera indirecta pero efectiva, dando lugar a procesos intera

    Twenty years of "Lipid World": a fertile partnership with David Deamer

    Get PDF
    "The Lipid World" was published in 2001, stemming from a highly effective collaboration with David Deamer during a sabbatical year 20 years ago at the Weizmann Institute of Science in Israel. The present review paper highlights the benefits of this scientific interaction and assesses the impact of the lipid world paper on the present understanding of the possible roles of amphiphiles and their assemblies in the origin of life. The lipid world is defined as a putative stage in the progression towards life's origin, during which diverse amphiphiles or other spontaneously aggregating small molecules could have concurrently played multiple key roles, including compartment formation, the appearance of mutually catalytic networks, molecular information processing, and the rise of collective self-reproduction and compositional inheritance. This review brings back into a broader perspective some key points originally made in the lipid world paper, stressing the distinction between the widely accepted role of lipids in forming compartments and their expanded capacities as delineated above. In the light of recent advancements, we discussed the topical relevance of the lipid worldview as an alternative to broadly accepted scenarios, and the need for further experimental and computer-based validation of the feasibility and implications of the individual attributes of this point of view. Finally, we point to possible avenues for exploring transition paths from small molecule-based noncovalent structures to more complex biopolymer-containing proto-cellular systems.711473 - Minerva Foundation; 80NSSC17K0295, 80NSSC17K0296, 1724150 - National Science FoundationPublished versio

    Multistable protocells can aid the evolution of prebiotic autocatalytic sets

    Full text link
    We present a simple mathematical model that captures the evolutionary capabilities of a prebiotic compartment or protocell. In the model the protocell contains an autocatalytic set whose chemical dynamics is coupled to the growth-division dynamics of the compartment. Bistability in the dynamics of the autocatalytic set results in a protocell that can exist with two distinct growth rates. Stochasticity in chemical reactions plays the role of mutations and causes transitions from one growth regime to another. We show that the system exhibits `natural selection', where a `mutant' protocell in which the autocatalytic set is active arises by chance in a population of inactive protocells, and then takes over the population because of its higher growth rate or `fitness'. The work integrates three levels of dynamics: intracellular chemical, single protocell, and population (or ecosystem) of protocells..Comment: 28 pages, 12 figures, includes Supplementary Materia

    Design and Characterisation of a Novel Artificial Life System Incorporating Hierarchical Selection

    Get PDF
    In this thesis, a minimal artificial chemistry system is presented, which is inspired by the RNA World hypothesis and is loosely based on Holland's Learning Classier Systems. The Molecular Classier System (MCS) takes a bottom-up, individual-based approach to building artificial bio-chemical networks. The MCS has been developed to demonstrate the effects of hierarchical selection. Hierarchical selection appears to have been critical for the evolution of complexity in life as we know it yet, to date, no computational artificial life system has investigated the viability of using hierarchical selection as a mechanism for achieving qualitatively similar results. Hierarchy in MCS is enforced by constraining artificial molecules, which are modeled as individuals, to exist within externally provided containers - protocells. This research is focused on the period of time surrounding the conjectured first Major Transition - from individual replicating molecules to populations of molecules existing within cells. Protocells can be thought of as simplified versions of contemporary biological cells. Molecular replication within these protocells causes them to grow until they undergo a process of binary fission. Darwinian selection is continuously and independently applied at both the molecular level and the protocell level. Experimental results are presented which display the phenomenon of selectional stalemate where the selectional pressures are applied in opposite directions such that they meet in the middle. The work culminates with the presentation of a stable artificial protocell system which is capable of demonstrating ongoing evolution at the protocell level via hierarchical selection of molecular species. Supplementary results are presented in the Appendix material as a set of experiments where selectional pressure is applied at the protocell level in a manner that indirectly favours particular artificial bio-chemical networks at the molecular level. It is shown that a molecular trait which serves no useful purpose to the molecules when they are not contained within protocells is exploited for the benefit of the collective once the molecules are constrained to live together. It is further shown that through the mechanism of hierarchical selection, the second-order effects of this molecular trait can be used by evolution to distinguish between protocells which contain desirable networks, and those that do not. A treatment of the computational potential of such a mechanism is presented with special attention given to the idea that such computation may indeed form the basis for the later evolution of the complicated Cell Signaling Pathways that are exhibited by modern cells

    Motility at the origin of life: Its characterization and a model

    Full text link
    Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing "replicator-first" and "metabolism-first" approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an impoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate timescales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct timescales, which are typically associated with metabolism, motility, development, and evolution. On this view, self-movement, adaptive behavior and morphological changes could have already been present at the origin of life. In order to illustrate this possibility we analyze a minimal model of life-like phenomena, namely of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis we suggest that processes in intermediate timescales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced timescales of chemical self-individuation and evolution by natural selection, respectively.Comment: 29 pages, 5 figures, Artificial Lif

    Adaptation from interactions between metabolism and behaviour: self-sensitive behaviour in protocells

    Get PDF
    This thesis considers the relationship between adaptive behaviour and metabolism, using theoretical arguments supported by computational models to demonstrate mechanisms of adaptation that are uniquely available to systems based upon the metabolic organisation of self-production. It is argued how, by being sensitive to their metabolic viability, an organism can respond to the quality of its environment with respect to its metabolic well-being. This makes possible simple but powerful ‘self-sensitive’ adaptive behaviours such as “If I am healthy now, keep doing the same as I have been doing – otherwise do something else.” This strategy provides several adaptive benefits, including the ability to respond appropriately to phenomena never previously experienced by the organism nor by any of its ancestors; the ability to integrate different environmental influences to produce an appropriate response; and sensitivity to the organism’s present context and history of experience. Computational models are used to demonstrate these capabilities, as well as the possibility that self-sensitive adaptive behaviour can facilitate the adaptive evolution of populations of self-sensitive organisms through (i) processes similar to the Baldwin effect, (ii) increasing the likelihood of speciation events, and (iii) automatic behavioural adaptation to changes in the organism itself (such as genetic changes). In addition to these theoretical contributions, a computational model of self-sensitive behaviour is presented that recreates chemotaxis patterns observed in bacteria such as Azospirillum brasilense and Campylobacter jejuni. The models also suggest new explanations for previously unexplained asymmetric distributions of bacteria performing aerotaxis. More broadly, the work advocates further research into the relationship between behaviour and the metabolic organisation of self-production, an organisational property shared by all life. It also acts as an example of how abstract models that target theoretical concepts rather than natural phenomena can play a valuable role in the scientific endeavour

    Replicator Dynamics in Protocells

    Get PDF
    Replicator equations have been studied for three decades as a generic dynamical system modelling replication processes. Here we show how they arise naturally in models of self-replicating polymers and discuss some of their basic properties. We then concentrate on a minimal dynamic model of a protocell by coupling replicating polymers with a growing membrane

    Sustainable growth and synchronization in protocell models

    Get PDF
    The growth of a population of protocells requires that the two key processes of replication of the protogenetic material and reproduction of the whole protocell take place at the same rate. While in many ODE-based models such synchronization spontaneously develops, this does not happen in the important case of quadratic growth terms. Here we show that spontaneous synchronization can be recovered (i) by requiring that the transmembrane diffusion of precursors takes place at a finite rate, or (ii) by introducing a finite lifetime of the molecular complexes. We then consider reaction networks that grow by the addition of newly synthesized chemicals in a binary polymer model, and analyze their behaviors in growing and dividing protocells, thereby confirming the importance of (i) and (ii) for synchronization. We describe some interesting phenomena (like long-term oscillations of duplication times) and show that the presence of food-generated autocatalytic cycles is not sufficient to guarantee synchronization: in the case of cycles with a complex structure, it is often observed that only some subcycles survive and synchronize, while others die out. This shows the importance of truly dynamic models that can uncover effects that cannot be detected by static graph theoretical analyses
    corecore