225 research outputs found

    Implementation of Adaptive Neural Networks Controller for NXT SCARA Robot System

    Get PDF
    Several neural network controllers for robotic manipulators have been developed during the last decades due to their capability to learn the dynamic properties and the improvements in the global stability of the system. In this paper, an adaptive neural controller has been designed with self learning to resolve the problems caused by using a classical controller. A comparison between the improved unsupervised adaptive neural network controller and the P controller for the NXT SCARA robot system is done, and the result shows the improvement of the self learning controller to track the determined trajectory of robotic automated controllers with uncertainties. Implementation and practical results were designed to guarantee online real-time

    Control system design for a high performance in a horizontal two-axis robot arm

    Full text link
    [ES] En este trabajo de investigación, se realizaron tareas de I+D+i para empresas del sector industrial del automóvil. El equipo de trabajo implementó una simplificación de un robot SCARA de 4GDL de la compañía Denso, en el que se suprimieron el eslabón prismático y rotacional destinado a la tool, dando una configuración de 2GDL. En este grupo de trabajo se desarrollaron e implementaron varios controladores que suprimieron las frecuencias fundamentales, producidas por la construcción del robot, con el fin de lograr una mejora en la eficiencia y la productividad en líneas de producción. Estas diferentes tipologías de control proporcionaron mayor velocidad y mayor precisión en el posicionamiento, con el fin de cumplir con las especificaciones del cliente, Denso Corporation.[EN] In this research, tasks of I+D+i for companies in the automotive industrial sector were performed. The equipment under test was a simplification of a 4-Axis SCARA robot from Denso Company. The prismatic and the rotation link, destined to the tool, were removed from the robot making in a 2-Axis robot. In this equipment were developed and implemented several controllers which suppressed the fundamental frequencies, produced by the physical construction of the robot, in order to achieve an improvement in work eciency and productivity of the production lines. These dierent typologies of control provided higher speed and higher accuracy in the positioning, in order to accomplish the client specifications, Denso Corporation.Burcio Crespo, Á.; Molina Montalván, UG. (2017). Control system design for a high performance in a horizontal two-axis robot arm. Universitat Politècnica de València. http://hdl.handle.net/10251/140515TFG

    Kinematics of AdeptThree Robot Arm

    Get PDF

    Task level disentanglement learning in robotics using βVAE

    Get PDF
    Humans observe and infer things in a disentanglement way. Instead of remembering all pixel by pixel, learn things with factors like shape, scale, colour etc. Robot task learning is an open problem in the field of robotics. The task planning in the robot workspace with many constraints makes it even more challenging. In this work, a disentanglement learning of robot tasks with Convolutional Variational Autoencoder is learned, effectively capturing the underlying variations in the data. A robot dataset for disentanglement evaluation is generated with the Selective Compliance Assembly Robot Arm. The disentanglement score of the proposed model is increased to 0.206 with a robot path position accuracy of 0.055, while the state-of-the-art model (VAE) score was 0.015, and the corresponding path position accuracy is 0.053. The proposed algorithm is developed in Python and validated on the simulated robot model in Gazebo interfaced with Robot Operating System

    Systematic literature review of realistic simulators applied in educational robotics context

    Get PDF
    This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also analyzed. As a result of this process, four realistic simulators were applied in the review’s referred context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ visual modeling due to the 3D rendering engines and the second reason is because they apply physics engines, allowing the robot’s interaction with the environment.info:eu-repo/semantics/publishedVersio

    Cooperative Control of the Dual Gantry-Tau Robot

    Get PDF
    Utilization of multiple parallel robots operating in the same work place and cooperating on the same job have opened up new challenges in coordination control strategies. Multiple robot control is a natural progression for Parallel Kinematic Machines (PKM) as it offers many of the desirable qualities especially in cooperative arrangements where multiple robots can be associated with an easily reconfigurable parallel machine. These special characteristics allow much faster and precise manipulations especially in manufacturing industries. With the possibility of cooperative control architecture, PKMs will be able to perform many of the tasks currently requiring dual serial robots such as complex assemblies, heavy load sharing and large machining jobs

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Vibration Based Control for Flexible Link Manipulator

    Get PDF
    corecore