968 research outputs found

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance

    A Robust Carrier Frequency Offset Estimation Algorithm in Burst Mode Multicarrier CDMA based Ad Hoc Networks

    Get PDF
    The future wireless communication systems demand very high data rates, anti-jamming ability and multiuser support. People want large amount of data to be continuously accessible in their personal devices. Direct Sequence (DS) spread spectrum based techniques such as Code Division Multiple Access (CDMA) fulfil these requirements but, at the same time, suffer from the Intersymbol Interference (ISI). Multicarrier CDMA (MC-CDMA) is an emerging technology to be used in mobile devices operating in an ad hoc setting due to its immunity towards ISI and having all the advantages of spread spectrum communication. One of the major problems with MC-CDMA is the high sensitivity towards carrier frequency offsets caused due to the inherent inaccuracy of crystal oscillators. This carrier frequency offset destroys the orthogonality of the subcarriers resulting in Intercarrier Interference (ICI). In this paper, we propose a computationally efficient algorithm based on Fast Fourier Transform (FFT) and biquadratic Lagrange interpolation. The FFT is based on the use of overlapping windows for each frame of the data instead of non-overlapping windows. This gives a coarse estimate of the frequency offset which is refined by the successive application of Lagrange quadratic interpolation to the samples in the vicinity of FFT peak. The proposed algorithm has been applied to the multiuser ad hoc network and simulated in Stanford University Interim (SUI) channels. It has been shown by simulations that the proposed algorithm provides better performance of almost 1~2 dB as compared to the well-known algorithms

    Simulación de una cadena de comunicaciones DS-CDMA - Simulació d’una cadena de comunicacions DS-CDMA

    Get PDF
    Català: En aquest projecte s'ha analitzat e implementat un sistema basat amb DSSS-CDMA amb un receptor comú y diversos transmissors sobre una plataforma modular en Matlab, essent aquesta una eina de validació teòrica. S'ha primat aquesta per sobre d'una implementació en DSP principalment pel cost ecònomic de les plaques DSP. Així, s'ha decidit fer una implementació en Matlab amb les restriccions pròpies d'una placa DSP. El principal objectiu del projecte es la validació del sistema mitjançant la simulació a nivell de mostra sense restriccions de memòria. El proper pas seria la implementació en plaques DSP, peró això s'escapa del objectiu d'aquest projecte. És per això que s'ha dissenyat un sistema que pugi processar les dades amb pocs recursos mitjançant Matlab, tots marcats per una serie de variables. El transmissor es composa de diversos mòduls invariants que son el codificador, modulador, spreader, zero padder, pols conformador i el up converter que estan encadenats per generar la senyal a transmetre per cada un dels diversos usuaris. Totes aquestes senyals passen per un canal d'esvaniment lent amb soroll Gaussià blanc que modelitza un medi de comunicacions mòbil. Finalment el receptor rep totes les senyals y les processa en una serie de mòduls independents formats per un filtre pas baix, downconverter, filtre adaptat, sincronitzador, downsampler, equalitzador, despreader, demodulador y decodificador. En aquest treball es pot observar en la secció de Resultats les captures de la senyal a cada una de les diverses fases seguides d'una breu explicació. Finalment es tracten les conclusions i les properes vies d'investigació.Castellano: En este proyecto se ha analizado e implementado un sistema basado en DSSS-CDMA con un receptor común y varios transmisores sobre una plataforma modular en Matlab, siendo ésta una herramienta de validación teórica. Se ha primado esta sobre una implementación en DSP por el coste económico de las placas DSP. Así que se ha decidido hacer una implementación en Matlab con las constricciones propias de una placa DSP. El objetivo principal del proyecto es la validación del sistema mediante la simulación a nivel de muestra sin restricciones de memoria. El siguiente paso sería la implementación en placas DSP pero esto se escapa del objetivo de este proyecto. Para ello se ha diseñado un sistema que pueda procesar los datos con pocos recursos en Matlab, marcados por una serie de variables. El transmisor se compone de varios módulos invariantes que son el codificador, modulador, spreader, zero padder, pulse shaper y el up converter que encadenados generan la señal a transmitir de cada uno de los distintos usuarios. Todas estas señales pasan por un canal con desvanecimientos lentos y ruido aditivo gaussiano que modeliza un medio de comunicaciones móvil. Finalmente el receptor recibe todas las señales y las procesa en una serie de módulos independientes formados por un filtro paso bajo, downconverter, filtro adaptado, sincronizador, downsampler, equalizador, despreader, demodulador y decodificador. En este trabajo se puede observar en la sección Resultados las capturas de la señal en cada una de las distintas fases seguida de una breve explicación. Para finalmente llegar a la sección de Conclusiones y Futuras líneas de investigación.English: This project has analyzed and implemented a system based on DS-CDMA with a common receiver and multiple transmitters on a modular platform in Matlab, which is used for theoretical validation tool. This platform has been chosen over a DSP implementation due to the economic cost of DSP boards. So, it was decided to implement it using Matlab considering the inherent constraints in a DSP board. Project's main objective is to validate this system by having a simulation at a sample level which has no memory constraints. The next step would be to implement this in DSP boards; however this is beyond the scope of this project. A system has been designed that can process data with few resources in Matlab environment. The system developed is highly configurable using some input parameters. The transmitter consists of several modules that are invariant which are encoder, modulator, spreader, zero padder, pulse shaper and converter. These chained modules generate each user transmitted signal. Once these transmittersâ signals have been generated, they pass through a slowly fading channel with additive Gaussian noise which models a means of mobile communications. Ultimately the receiver gets all signals and processes them in a series of independent modules consisting of a low pass filter, downconverter, matched filter, synchronizer, downsampler, equalizer, despreader, demodulator and decoder. This work can be seen in the â Resultsâ section where there are screens of the signal in each of the phases followed by a brief justification

    Packet CDMA communication without preamble

    Get PDF
    Code-Division Multiple-Access (CDMA) is one of the leading digital wireless communication methods currently employed throughout the world. Third generation (3G) and future wireless CDMA systems are required to provide services to a large number of users where each user sends data burst only occasionally. The preferred approach is packet based CDMA so that many users share the same physical channel simultaneously. In CDMA, each user is assigned a pseudo-random (PN) code sequence. PN codephase synchronization between received signals and a locally generated replica by the receiver is one of the fundamental requirements for successful implementation of any CDMA technique. The customary approach is to start each CDMA packet with a synchronization preamble which consists of PN code without data modulation. Packets with preambles impose overheads for communications in CDMA systems especially for short packets such as mouse-clicks or ATM packets of a few hundred bits. Thus, it becomes desirable to perform PN codephase synchronization using the information-bearing signal without a preamble. This work uses a segmented matched filter (SMF) which is capable of acquiring PN codephase in the presence of data modulation. Hence the preamble can be eliminated, reducing the system overhead. Filter segmentation is also shown to increase the tolerance to Doppler shift and local carrier frequency offset. Computer simulations in MATLAB® were carried out to determine various performance measures of the acquisition system. Substantial improvement in probability of correct codephase detection in the presence of multiple-access interference and data modulation is obtained by accumulating matched filter samples over several code cycles prior to making the codephase decision. Correct detection probabilities exceeding 99% are indicated from simulations with 25 co-users and 10 kHz carrier frequency offset or Doppler shift by accumulating five or more PN code cycles, using maximum selection detection criterion. Analysis and simulation also shows that cyclic accumulation can improve packet throughput by 50% and by as much as 100% under conditions of high offered traffic and Doppler shift for both fixed capacity and infinite capacity systems

    Two-stage code acquisition in wireless optical CDMA communications using optical orthogonal codes

    Get PDF
    In this paper, we analyze the performance of code acquisition system in atmospheric optical code division multiple access (OCDMA) communications using optical orthogonal codes. Memory introduced by temporal correlation of optical fading process precludes us from using the Markov chain model for a code acquisition analysis. By considering this issue, we discuss how to extend the applicability of the Markov chain model to the atmospheric OCDMA communications. We analyze and compare the performance of correlator and chip level detector (CLD) structures in the acquisition system. In our analysis, we consider the effects of free space optical channel impairments, multiple access interference, and receiver thermal noise in the context of semi-classical photon-counting approach. Furthermore, we evaluate the performance of various two stage schemes that utilize different combinations of active correlator, matched filter, and CLD in search and verification stages, and we find the optimum acquisition scheme among them. Numerical results show significant improvement in reducing the acquisition time and required power for synchronization using our optimum scheme in the wireless OCDMA communications

    Compressive Sensing in Communication Systems

    Get PDF

    The Global Navigation System Scope (GNSScope): a toolbox for the end-to-end modelling simulation and analysis of GNSS

    Get PDF
    The thesis provides a detailed overview of the work carried out by the author over the course of the research for the award of the degree of Doctor of Philosophy at the University of Westminster, and the performance results of the novel techniques introduced into the literature. The outcome of the work is collectively referred to as the Global Navigation System Scope (GNSScope) Toolbox, offering a complete, fully reconfigurable platform for the end-to-end modeling, simulation and analysis of satellite navigation signals and systems, covering the signal acquisition, tracking, and range processing operations that take place in a generic Global Navigation Satellite System (GNSS) receiver, accompanied by a Graphical User Interface (GUI) providing access to all the techniques available in the toolbox. Designed and implemented entirely in the MATLAB mathematical programming environment using Software Defined Radio (SDR) receiver techniques, the toolbox offers a novel new acquisition algorithm capable of handling all Phase-Shift Keying (PSK) type modulations used on all frequency bands in currently available satellite navigation signals, including all sub-classes of the Binary Offset Carrier (BOC) modulated signals. In order to be able to process all these signals identified by the acquisition search, a novel tracking algorithm was also designed and implemented into the toolbox to track and decode all acquired satellite signals, including those currently intended to be used in future navigation systems, such as the Galileo test signals transmitted by the GIOVE satellites orbiting the Earth. In addition to the developed receiver toolbox, three novel algorithms were also designed to handle weak signals, multipath, and multiple access interference in GNSScope. The Mirrored Channel Mitigation Technique, based on the successive and parallel interference cancellation techniques, reduces the hardware complexity of the interference mitigation process by utilizing the local code and carrier replicas generated in the tracking channels, resulting in a reduction in hardware resources proportional to the number of received strong signals. The Trigonometric Interference Cancellation Technique, used in cross-correlation interference mitigation, exploits the underlying mathematical expressions to simplify the interference removal process, resulting in reduced complexity and execution times by reducing the number of operations by 25% per tracking channel. The Split Chip Summation Technique, based on the binary valued signal modulation compression technique, enhances the amount of information captured from compressing the signal to reveal specific filtering effects on the positive and negative polarity chips of the spreading code. Simulation case studies generated entirely using the GNSScope toolbox will be used throughout the thesis to demonstrate the effectiveness of the novel techniques developed over the course of the research, and the results will be compared to those obtained from other techniques reported in the literature
    corecore