2,935 research outputs found

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    An Agent-Based Simulation API for Speculative PDES Runtime Environments

    Get PDF
    Agent-Based Modeling and Simulation (ABMS) is an effective paradigm to model systems exhibiting complex interactions, also with the goal of studying the emergent behavior of these systems. While ABMS has been effectively used in many disciplines, many successful models are still run only sequentially. Relying on simple and easy-to-use languages such as NetLogo limits the possibility to benefit from more effective runtime paradigms, such as speculative Parallel Discrete Event Simulation (PDES). In this paper, we discuss a semantically-rich API allowing to implement Agent-Based Models in a simple and effective way. We also describe the critical points which should be taken into account to implement this API in a speculative PDES environment, to scale up simulations on distributed massively-parallel clusters. We present an experimental assessment showing how our proposal allows to implement complicated interactions with a reduced complexity, while delivering a non-negligible performance increase

    NASA Formal Methods Workshop, 1990

    Get PDF
    The workshop brought together researchers involved in the NASA formal methods research effort for detailed technical interchange and provided a mechanism for interaction with representatives from the FAA and the aerospace industry. The workshop also included speakers from industry to debrief the formal methods researchers on the current state of practice in flight critical system design, verification, and certification. The goals were: define and characterize the verification problem for ultra-reliable life critical flight control systems and the current state of practice in industry today; determine the proper role of formal methods in addressing these problems, and assess the state of the art and recent progress toward applying formal methods to this area

    Optimal classical simulation of state-independent quantum contextuality

    Full text link
    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log⁡224≈4.585\log_2 24 \approx 4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.7405.740 bits.Comment: 7 pages, 4 figure

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Towards a verified transformation from AADL to the formal component-based language FIACRE

    Get PDF
    International audienceDuring the last decade, aadl  is an emerging architecture description languages addressing the modeling of embedded systems. Several research projects have shown that aadl  concepts are well suited to the design of embedded systems. Moreover, aadl  has a precise execution model which has proved to be one key feature for effective early analysis. In this paper, we are concerned with the foundational aspects of the verification support for aadl. More precisely, we propose a verification toolchain for aadl  models through its transformation to the Fiacre language which is the pivot verification language of the TOPCASED project: high level models can be transformed to Fiacre  models and then model-checked. Then, we investigate how to prove the correctness of the transformation from AADL into Fiacre and present related elementary ingredients: the semantics of aadl  and Fiacre  subsets expressed in a common framework, namely timed transition systems. We also briefly discuss experimental validation of the work
    • 

    corecore