63 research outputs found

    Novel Bearingless Switched Reluctance Motor with Wide Flat Inductance Region to Simplify the Control of Torque and Levitation Force

    Get PDF
    In conventional 12/8 bearingless switched reluctance motors (BSRMs), the generation and control of torque and levitation forces are always coupled and interacted, which increases the complexity of the current control algorithm. In this paper, a novel BSRM with 12 stator poles and 4 rotor poles is proposed to simplify the control of torque and levitation, which has wide flat inductance region. Through allocating the generation of torque and levitation forces to different inductance regions of each phase, the levitation control can be similar as that of magnetic bearings, and the torque control can adopt the methods of conventional switched reluctance motors, e.g. current chopping control and angle position control. Accordingly, the current control algorithm of proposed BSRM becomes very easy and flexible. Extensive experiments were completed to verify the demonstrated performance of proposed motor

    An Improved Direct Torque Control for a Single-Winding Bearingless Switched Reluctance Motor

    Get PDF
    The direct torque control (DTC) and direct force control (DFC) method were introduced to reduce the torque and levitation force ripple in single-winding bearingless switched reluctance motors (SWBSRMs). However, it still has some disadvantages. Firstly, the flux-linkage control is not suitable for the DTC method in SWBSRMs. On the one hand, it can increase the torque ripple. On the other hand, the RMS current can be increased and then the torque-ampere ratio is decreased. Secondly, the vectors selection is also unreasonable, which can increase the torque ripple further. In order to solve these problems, an improved control method based on DTC and DFC method for SWBSRMs is proposed in this paper, which can obtain high torque-ampere ratio and low torque ripple simultaneously. In the proposed method, the flux-linkage loop control is not needed and the space voltage vector table is improved. The experimental results show that the torque ripple is reduced by 66.7%, the torque-ampere ratio is increased by 200% and the switching times in one electrical period are reduced by 47.3%

    Decoupling Control for Dual-Winding Bearingless Switched Reluctance Motor Based on Improved Inverse System Method

    Get PDF
    Dual-winding bearingless switched reluctance motor (BSRM) is a multivariable high-nonlinear system characterized by strong coupling, and it is not completely reversible. In this paper, a new decoupling control strategy based on improved inverse system method is proposed. Robust servo regulator is adopted for the decoupled plants to guarantee control performances and robustness. A phase dynamic compensation filter is also designed to improve system stability at high-speed. In order to explain the advantages of the proposed method, traditional methods are compared. The tracking and decoupling characteristics as well as disturbance rejection and robustness are deeply analyzed. Simulation and experiments results show that the decoupling control of dual-winding BSRM in both reversible and irreversible domains can be successfully resolved with the improved inverse system method. The stability and robustness problems induced by inverse controller can be effectively solved by introducing robust servo regulator and dynamic compensation filter

    Aktiivinen magneettilaakeri vaihtoreluktanssimoottorina

    Get PDF
    The goal of this work was to research the similarities between active magnetic bearings and switched reluctance motor and particularly research the chances for converting magnetic bearing into switched reluctance motor. In addition, ways to cope with the widely reported problems the motor type has were studied. The test environment consisted of test rig, previously used for testing control methods for magnetic bearing. In addition to this, MATLAB Simulink simulation models were built to help the designing of the test setup. The test setup had two alternative controllers, an original magnetic bearing controller, modified to work as a motor controller and a new CompactRIO-based controller that was used for comparing different speed control and commutation methods. New rotor designs were engineered to work with the prototype motor that used unmodified magnetic bearing stator. This setup was tested for obtaining the output torque and maximum speed of the motor together with the accuracy to follow set values. Test results of simulations and test setup were inside the error margins, showing the use of simulations beneficial in design process of this type of a motor. The tests revealed differences between the control methods, suggesting using the advanced angle controller and adjustable commutation angles.Työn tavoitteena oli tutkia yhteneväisyyksiä aktiivimagneettilaakerien ja vaihtoreluktanssimoottorin välillä. Tutkimus keskittyi erityisesti arvioimaan mahdollisuuksia muuntaa magneettilaakeri vaihtoreluktanssimoottoriksi. Lisäksi tutkittiin keinoja ratkaista ongelmia, joita tämän tyyppisessä sähkömoottorissa on raportoitu olevan. Testiympäristö koostui roottorikoelaitteesta, jota on aikaisemmin käytetty magneettilaakerin säätöjärjestelmän tutkimuksessa. Lisäksi rakennettiin MATLAB Simulink simulointimalli, jota käytettiin moottorin säätöjärjestelmän suunnittelun apuna. Testilaitteessa oli kaksi vaihtoehtoista säätöjärjestelmää; alkuperäinen magneettilaakerin ohjain muokattuna toimimaan moottorin ohjaimena sekä uusi CompactRIO -järjestelmään perustuva säätöjärjestelmä. Jälkimmäistä käytettiin erilaisten nopeus- ja kommutointitapojen vertailuun keskenään. Prototyyppimoottorin staattori oli sama, jota käytettiin magneettilaakerin kanssa. Roottori suunniteltiin sopimaan juuri tähän käyttötarkoitukseen. Tätä koelaitetta testattiin vääntömomentin ja maksiminopeuden selvittämiseksi. Lisäksi suoritettiin testejä, joissa tutkittiin kykyä seurata nopeuden asetusarvoa. Simuloimalla saadut tulokset olivat hyvin lähellä koelaitteella saatuja tuloksia osoittaen simuloinnin käytön olevan hyödyllistä tämän tyyppisen moottorin suunnittelussa. Säätömenetelmät suoriutuivat vaihtelevalla menestyksellä testeistä. Suositeltava säätömenetelmä oli edistyskulman säädin, joka käytti hyväkseen säädettäviä kommutointikulmia

    Control System Commissioning of Fully Levitated Bearingless Machine

    Get PDF
    The bearingless permanent magnet synchronous motor (BPMSM) is a compact motor structure that combines the motoring and bearing functions based on well-designed integrated windings for generating both torque and magnetic suspension force. In order to achieve a successful high-performance control design for the BPMSM, an adequate model of the rotor dynamics is essential. This paper proposes simplified multiple-input and multiple-output (MIMO) control approaches, namely the pole placement and the linear-quadratic regulator (LQR), that allow to carry out identification experiments in full levitation. Additionally, the stability of the MIMO levitation controller is verified with the rotation tests. Compared with other recently published works, the novelty of this paper is to experimentally demonstrate that a stable fully levitated five-degrees-of-freedom (5-DOF) operation of a bearingless machine can be achieved by the proposed approach, and thereby, options for commissioning of such a system are obtained

    IMPLEMENTATION AND VALIDATION OF FAULT TOLERANT CONTROL OF A SELF-BEARING MOTOR CONSIDERING OPEN COIL FAULTS

    Get PDF
    Self-bearing motor is a magnetic actuator with both bearing and motoring functionality. This work implements and validates a decoupled and fault tolerant control algorithm for the Lorentz self bearing motor containing open phase faults. The goal of the algorithm is to achieve a stable bearing force and motoring torque even with coil faults. This work simulates many non-real-time fault tolerant control models based on the algorithm using simulink. Test cases are designed in simulink and tested on these models to arrive at the best model that could be implemented in dspace for real-time control. The responses of these simulations are compared with the desired output. Simulations showed that the decoupled and fault tolerant control model does not have any cross coupling and was fault tolerant for many combinations of open phase faults. Simulink model was modified so that it was auto-complied into the dspace controller and dynamically linked with the hardware. A graphical user interface was provided for fault tolerant control in controldesk software and the motor was controlled in real-time. Many experiments are designed to test the fault tolerant control model. Experimental results validate fault tolerance in the motor with respect to open coil faults. The self-bearing motor was found to be more stable in decoupled and fault tolerant control than non-fault tolerant control

    Advanced control strategies for partially levitating multi-sector permanent magnet synchronous machines

    Get PDF
    The thesis presents solutions to improve the performance of a partially levitating bearingless permanent magnet synchronous machine with a multi-three-phase winding. A combined winding topology, which consists of three independent three-phase sub-windings, is installed in the stator where each phase contributes to both the suspension force and the motoring torque. This work focuses on control algorithms, including fault-tolerant controls, a current limitation technique, and a current-sharing technique. Firstly, the thesis presents an analytical formulation of the force and torque generation in healthy operative conditions. Following, the three-phase and single-phase open-circuit fault conditions are also analysed. The analytical model of the machine is presented in a generic matrix form so that it can be applied to any machine with a multi-three-phase winding structure if the coupling among sectors is negligible. The fault-tolerant control algorithms address the issues of open-circuit faults of an entire three-phase sub-winding, of a single-phase in a three-phase sub-winding, or of two phases belonging to two different three-phase sub-windings. The theoretical analysis is verified with both Finite Elements Analysis and experimental tests. Then, the thesis proposes a current limitation technique. The main challenges with the combined winding configuration consist of decoupling the suspension force and torque generation and designing a proper current limitation technique. The latter is required in order to maintain the machine in safe operative conditions according to its current-voltage rating and its operative thermal limits. This thesis addresses the limitation technique based on the analytical models, considering both healthy and faulty conditions. In particular, the proposed current limitation technique allows prioritising the suspension force, which is considered a safety-critical output with respect to the torque in order to avoid the rotor touchdown. Numerical simulation results and experimental validation are provided to validate the algorithm. Finally, the thesis proposes a modular approach for a current-sharing control of the machine. A thorough explanation of the methodology used is presented, as well as control algorithms to consider the torque and force control combined with the current-sharing management of the machine. Particular emphasis is also placed on validating the modelling hypotheses based on a finite element characterisation of the machine electro-mechanical behaviour. The proposed control strategy is also extended to cater to the possibility of one or more inverters failure, thus validating the intrinsic advantage of the redundancy obtained by the system's modularity. An extensive experimental test is finally carried out on a prototyped machine. The obtained results validate the current-sharing operation in either healthy or faulty scenarios, both at steady-state and under transient conditions. These outcomes show the potential of the proposed strategy to increase the versatility of fault-tolerant drives applied to this machine topology

    Radial force control of multi-sector permanent magnet machines for vibration suppression

    Get PDF
    Radial force control in electrical machines has been widely investigated for a variety of bearingless machines, as well as for the conventional structures featuring mechanical bearings. This paper takes advantage of the spatial distribution of the winding sets within the stator structure in a multisector permanent-magnet (MSPM) machine toward achieving a controllable radial force. An alternative force control technique for MSPM machines is presented. The mathematical model of the machine and the theoretical investigation of the force production principle are provided. A novel force control methodology based on the minimization of the copper losses is described and adopted to calculate the d–q axis current references. The predicted performances of the considered machine are benchmarked against finite-element analysis. The experimental validation of the proposed control strategy is presented, focusing on the suppression of selected vibration frequencies for different rotational speeds

    Development of high efficiency high speed permanent magnet generator

    Get PDF
    Renewable energy technology is steadily gaining importance in the energy market because of the limited nature of fossil fuels, as well as the political pressures to reduce carbon emissions. To ensure sustainable development, adequate and affordable energy should be made available to satisfy the demand of electric energy. The High Speed Permanent Magnet (HSPM) generator is designed and developed and is expected to deliver 10 kW output power as well as to achieve a speed of 30000 RPM, however, to achieve a compact and efficient design with lower excitation losses, magnetizing currents and rotor losses requires the HSPM generator to be operated at high rated speeds of approximately 30000 RPM. However, at high speeds these machines produce a substantial amount of heat. This makes the thermal management of these machines difficult and complicated, which leads to demagnetization and the reduction of the output power and shortens the lifetime of the critical components such as the bearings. This thesis presents the design and development of the HSPM generator. It also identifies the heat generated by means of electromagnetic, mechanical and core losses. The development of an adequate cooling system (cooling jacket) is presented to avoid hot spots in the generator and thermal damage to the magnets, resulting in demagnetization. The use of pressurized oil air particles as a lubrication method for the bearings of the generator is also considered to avoid: thermal damage and starvation at the rolling element and to address the predominant concern of effectively cooling the HSPM generator ball bearings at elevated speeds. The HSPM generator is designed and developed to operate at a maximum speed of 30000 RPM to deliver 10 kW output power and is subjected to 80~92°C temperature rise with an idle power consumption of ~2kW, enough to cause hot spots on the generator, demagnetization of the magnets and severe impact to the rolling elements of the bearings. The developed cooling jacket and the newly developed oil air mist lubrication arrangement enables the control of the temperature rise of the generator and the temperature rise at the rolling element, respectively. A steady state analysis was also carried out at motor maximum power output to determine its safe operation with the objective of finding an optimal operating condition by performing a parametric study on the effect of cooling. A 3D steady state model of a 10-kW electric permanent magnet machine was generated and investigated with one cooling jacket layout. The end windings and bearings were not considered to simplify the motor model. Numerical analysis is performed with two different coolant flow rates, no flow and maximum flow (3.5 m3 /h) with special emphasis on the maximum motor temperature. The analytical calculations for the role of coolant flowrate on heat transfer characteristics for a high speed generator, showed that the convection heat transfer coefficient increases with an increase in flowrate (0.3 – 3.5 m3 /hr), while the numerical simulations showed that the maximum coolant flowrate conditions achieved lower temperature generation (27.9°C at the front bearing) throughout the generator compared to no coolant flowrate (43.7°C at the front bearing). The detailed understanding of the effects of these parameters on the generator’s temperature field will help in validating the performance of the generator with actual results
    corecore