3,648 research outputs found

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Exploring Wireless Data Center Networks: Can They Reduce Energy Consumption While Providing Secure Connections?

    Get PDF
    Data centers have become the digital backbone of the modern world. To support the growing demands on bandwidth, Data Centers consume an increasing amount of power. A significant portion of that power is consumed by information technology (IT) equipment, including servers and networking components. Additionally, the complex cabling in traditional data centers poses design and maintenance challenges and increases the energy cost of the cooling infrastructure by obstructing the flow of chilled air. Hence, to reduce the power consumption of the data centers, we proposed a wireless server-to-server data center network architecture using millimeter-wave links to eliminate the need for power-hungry switching fabric of traditional fat-tree-based data center networks. The server-to-server wireless data center network (S2S-WiDCN) architecture requires Line-of-Sight (LoS) between servers to establish direct communication links. However, in the presence of interference from internal or external sources, or an obstruction, such as an IT technician, the LoS may be blocked. To address this issue, we also propose a novel obstruction-aware adaptive routing algorithm for S2S-WiDCN. S2S-WiDCN can reduce the power consumption of the data center network portion while not affecting the power consumption of the servers in the data center, which contributes significantly towards the total power consumption of the data center. Moreover, servers in data centers are almost always underutilized due to over-provisioning, which contributes heavily toward the high-power consumption of the data centers. To address the high power consumption of the servers, we proposed a network-aware bandwidth-constrained server consolidation algorithm called Network-Aware Server Consolidation (NASCon) for wireless data centers that can reduce the power consumption up to 37% while improving the network performance. However, due to the arrival of new tasks and the completion of existing tasks, the consolidated utilization profile of servers change, which may have an adverse effect on overall power consumption over time. To overcome this, NASCon algorithm needs to be executed periodically. We have proposed a mathematical model to estimate the optimal inter-consolidation time, which can be used by the data center resource management unit for scheduling NASCon consolidation operation in real-time and leverage the benefits of server consolidation. However, in any data center environment ensuring security is one of the highest design priorities. Hence, for S2S-WiDCN to become a practical and viable solution for data center network design, the security of the network has to be ensured. S2S-WiDCN data center can be vulnerable to a variety of different attacks as it uses wireless links over an unguided channel for communication. As being a wireless system, the network has to be secured against common threats associated with any wireless networks such as eavesdropping attack, denial of services attack, and jamming attack. In parallel, other security threats such as the attack on the control plane, side-channel attack through traffic analysis are also possible. We have done an extensive study to elaborate the scope of these attacks as well as explore probable solutions against these issues. We also proposed viable solutions for the attack against eavesdropping, denial of services, jamming, and control-plane attack. To address the traffic analysis attack, we proposed a simulated annealing-based random routing mechanism which can be adopted instead of default routing in the wireless data center

    Signalling Storms in 3G Mobile Networks

    Full text link
    We review the characteristics of signalling storms that have been caused by certain common apps and recently observed in cellular networks, leading to system outages. We then develop a mathematical model of a mobile user's signalling behaviour which focuses on the potential of causing such storms, and represent it by a large Markov chain. The analysis of this model allows us to determine the key parameters of mobile user device behaviour that can lead to signalling storms. We then identify the parameter values that will lead to worst case load for the network itself in the presence of such storms. This leads to explicit results regarding the manner in which individual mobile behaviour can cause overload conditions on the network and its signalling servers, and provides insight into how this may be avoided.Comment: IEEE ICC 2014 - Communications and Information Systems Security Symposiu

    Flooding Distributed Denial of Service Attacks-A Review

    Get PDF
    Flaws either in users’ implementation of a network or in the standard specification of protocols has resulted in gaps that allow various kinds of network attack to be launched. Of the kinds of network attacks, denial-of-service flood attacks have caused the most severe impact. Approach: This study reviews recent researches on flood attacks and their mitigation, classifying such attacks as either high-rate flood or low-rate flood. Finally, the attacks are compared against criteria related to their characteristics, methods and impacts. Results: Denial-of-service flood attacks vary in their rates, traffic, targets, goals and impacts. However, they have general similarities that are the methods used are flooding and the main purpose is to achieve denial of service to the target. Conclusion/Recommendations: Mitigation of the denial-of-service flood attacks must correspond to the attack rates, traffic, targets, goals and impacts in order to achieve effective solution
    • …
    corecore